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This is not a physics textbook. Rather, it is a physics
reader, a collection of some of the best articles and
book passages o1 physics. A few are on historic events
in science, others contain some particularly memorable
description of what physicists do; still others dee: with
philosophy of science, or with the impact of scientific
thought on the imagination of the artist.

There are old and new classics, and also some little-
known publications; many have been suggested for in-
clusion because some teacher or physicist remembered
an article with particular fondness. The majority of
articles is not drawn from scientific papers of historic
importance themselves, because material from many of
these is readily available, either as quotations in the
Project Physics text or in special collections.

This collection is meant for your browsing. If you follow
your own reading interests, chances are good that you
will find here many pages that convey the joy these
authors have in their work and the excitement of their
ideas. If you want to follow up on interesting excerpts,
the source list at the end of the reader will guide you
for further reading.
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The Value of Science

Richard P. Feynman

1958

From time to time, people suggest to me that scientists ought
to give more consideration to social problemsespecially that
they should be more responsible in considering the impact of
science upon srciety. This same suggestion must be made to
many other scientists, and it seems to be generally believed that
if the scientists would only look at these very difficult social
problems and not spend so much time fooling with the less vital
scientific ones, great success would come of it.

It seems to me that we do think about these problems
from time to time, but we don't put full-time effort into them
the reason being that we know we don't have any magic for-
mula for solving problems, that social problems are very much
harder than scientific ones, and that we usually don't get any-
where when we do think about them.

I believe that a scientist looking at nonscientific problems is
just as dumb as the next guyand when he talks about a non-
scientific matter, he will sound as naive as anyone untrained in
the matter. Since the question of the value of science is not a
scientific subject, this discussion is dedicated to proving my
pointby example.

The first way in which science is of value is familiar to every-
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one. It is that scientific knowledge enables us to do all kinds
of things and to make all kinds of things. Of course if we make
good things, it is not only to the credit of science; it is also to
the credit of the moral choice which led us to good work. Sci-
entific knowledge is an enabling power to do either good or
badbut it does not carry instructions on kw to use it. Such
power has evident value even though the power may be negated
by what one does.

I learned a way of expressing this common human problem
on a trip to Honolulu. In a Buddhist temple there, the man in
charge explained a little bit about the Buddhist religion for
tourists, and then ended his talk by telling them he had some-
thing to say to them that they would never forgetand I have
never forgotten it. It was a proverb of the Buddhist religion:

"To every man is given the key to the gates of heaven; the
same key opens the gates of hell."

What then, is the value of the key to heaven? It is true that
if we lack clear ir,structions that determine which is the gate to
heaven and which the gate to hell, the key may be a dangerous
object to use, but it obviously has value. How can we enter
heaven without it?

The instructions, also, would be of no value without the key.
So it is evident that, in spite of the fact that science could
produce enormous horror in the world, it is of value because it
can produce something.

Another value of science is the fun called intellectual enjoy-
ment which some people get from reading and learning and
thinking about it, and which others get from working in it. This
is a very real and important point and one which is not con-
sidered enough by those who tell us it is our social responsi-
bility to reflect on the impact of science on society,

Is this mere perzonal enjoyment of value to society as a
whole? Nol But it is also a responsibility to consider the value
of society itself. Is it, in the last analysis, to arrange things so
that people can enjoy things? If so, the enjoyment of science is
as important as anything else.

But I would like not to underestimate the value of the world



The Value of Science

view which is the result of scientific effort. We have been led
to imagine all sorts of things infinitely more marvelous than
the imaginings of poets and dreamers of the past. It shows that
the imagination of nature is far, far greater than the imagination
of man. For instance, how much more remarkable it is for us
all to be stuckhalf of us upside downby a mysterious attrac-
tion, to a spinning ball that has been swinging in space for bil-
lions of years, than to be carried on the back of an elephant
supported on a tortoise swimming in a bottomless sea.

I have thought about these things so many times alone that
I hope you will excuse me if I remind you of some thoughts
that I am sure you have all hador this type of thoughtwhich
no one could ever have had in the past, because people then
didn't have the information we have about the world today.

For instance, I stand at the seashore, alone, and start to think.
There are the rushing waves . . . mountains of molecules, each
stupidly minding its own business . . . trillions apart . . . yet
forming white surf in unison.

Ages on ages . . . before any eyes could see . . . year after
year . . . thunderously pounding the shore as now. For whom,
for what? . . . on a dead planet, with no life to entertain.

Never at rest . . . tortured by energy . . . wasted prodigiously
by the sun . . . poured into space. A mite makes the sea roar.

Deep in the sea, all molecules repeat the patterns of one
another till complex new ones are formed. They make others
like themselves . . . and a new dance starts.

Growing in size and complexity . . . living things, masses
of atoms, DNA, protein . .. dancing a pattern ever more intricate.

Out of the cradle onto the dry land . . . here it is standing
. . . atoms with consciousness . . . matter with curiosity.

Stands at the sea . .. wonders at wondering . . . I . . . a uni-
verse of atoms . . . an atom in the universe.

THE GRAND ADVENTURE

The same thrill, the same awe and mystery, come again
and again when we look at any problem deeply enough. With
more knowledge comes deeper, more wonderful mystery, luring

3



one on to penetrate deeper still. Never concerned that the an-
swer may prove disappointing, but with pleasure and confidence
we turn over each new stone to find unimagined strangeness
leading on to more wonderful questions and mysteriescertainly
a grand adventure!

It is true that few unscientific people have this particular
type of religious experience. Our poets do not write about it;
our artists do not try to portray this remarkable thing. I don't
know why. Is nobody inspired by our present picture of the
universe? The value of science remains unsung by singers, so
you are reduced to hearingnot a song or a poem, but an eve-
ning lecture about it. This is not yet a scientific age.

Perhaps one of the reasons is that you have to know how to
read the music. For instance, the scientific article says, perhaps,
something like this: The radioactive phosphorus content of
the cerebrum of the rat decreases to one-half in a period of
two weeks." Now, what does that mean?

It means that phosphorus that is in the brain of a rat (and
also in mine, and yours) is not the same phosphorus as it was
two weeks ago, but that all of the atoms that are in the brain
are being replaced, and the ones that were there before have
gone away.

So what is this mind, what are these atoms with conscious-
ness? Last week's potatoes! That is what now can remember
what was going on in my mind a year agoa mind which has
long ago been replaced.

That is what it means when one discovers how long it takes
for the atoms of the brain to be replaced by other atoms, to
note that the thing which I call my individuality is only a pat-
tern or dance. The atoms come into my brain, dance a dance,
then go out; always new atoms but always doing the same
dance, remembering what the dance was yesterday.

THE REMARKABLE IDEA

When we read about this in the newspaper, it says, The
scientist says that this discovery may have importance in the
cure of cancer." The paper is only interested in the use of the
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idea, not the idea itself. Hardly anyone can understand the
importance of an idea, it is so remarkable. Except that, possibly,
some children catch on And when a child catches on to an
idea like that, we have a scientist. These ideas do filter down (in
spite of all the conversation. about TV replacing thinking), and
lots of kids get the spiritand when they have the spirit you
have a scientist. It's too late for them to get the spirit when they
are in our universities, so we must attempt to explain these ideas
to children.

I would now like to turn to a third value that science has.
It is a little more indirect, but not much. The scientist has a
lot of experience with ignorance and doubt and uncertainty,
and this experience is of very great importance, I think. When
a scientist doesn't know the answer to a problem, he is ig-
norant. When he has a hunch as to what the result is, he is
uncertain. And when he is pretty darn sure of what the result
is going to be, he is in some doubt. We have found it of para-
mount importance that in order to progress we must recog-
nize the ignorance and leave room for doubt. Scientific knowl-
edge is a body of statements of varying degrees of certainty
F-ome most unsure, some nearly sure, none absolutely certain.

Now, we scientists are used to this, and we take it for granted
that it is perfectly consistent to be unsurethat it is possible
to live and r.ot know. But I don't know whether everyone real-
izes that this is true. Our freedom to doubt was born of a
struggle against authority in the early days of science. It was a
very deep and strong struggle. Permit us to questionto doubt,
that's allnot to be sure. And I think it is important that we
do not forget the importance of this struggle and thus perhaps
lose what we have gained. Here lies a responsibility to society.

We are all sad when we think of the wondrous potentialities
human beings seem to have, as contrasted with their small ac-
complishments. Again and again people have thought that we
could do much better. They of the past saw in the nightmare
of their times a dream for the future. We, of their future, see
that their dreams, in certain ways surpassed, have in many ways
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remained dreams. The hopes for the future today are, in good
share, those of yesterday.

EDUCATION, FOR GOOD AND EVIL

Once some thought that the possibilities people had were
not developed because most of those people were ignorant.
With education universal, could all men be Voltaires? Bad can
be taught at least as efficiently as good. Education is a strong
force, but for either good or evil.

Communications between nations must promote understand-
ing: so went another dream. But the machines of communication
can be channeled or choked. What is communicated can be
truth or lie. Communication is a strong force also, but for
either good or bad.

The applied sciences should free men of material problems
at least. Medicine controls diseases. And the record here seems
all to the good. Yet there are men patiently working to create
great plagues and poisons. They are to be used in warfare to-
morrow.

Nearly everybody dislikes war. Our dream today is peace. In
peace, man can develop best the enormous possibilities he
seems to have. But maybe future men will find that peace, too,
can be good and bad. Perhaps peaceful men will drink out of
boredom. Then perhaps rixink will become the great problem
which seems to keep man from getting all he thinks he should
out of his abilities.

Clearly, peace is a great force, as is sobriety, as are material
power, communication, education, honesty and the ideals of
many dreamers.

We have more of these forces to control than did the ancients.
And maybe we are doing a little better than most of them
cord do. But what we ought to be able to do seems gigantic
compared with our confused accomplishments.

Why is this? Why can't we conquer ourselves?
Because we find that even great forces and abilities do not

seem to carry with them clear instructions on how to use them.



The Value of Science

As an example, the great accumulation of understanding as to
how the physical world behaves only convinces one that this
behavior seems to have a kind of meaninglessness. The sciences
do not directly teach good and bad.

Through all ages men have tried to fathom the meaning of
life. They have realized that if some direction or meaning could
be given to our actions, great human forces would be unleashed.
So, very many answers must have been given to the question
of the meaning of it all. But they have been of all different
sorts, and the proponents of one answer have looked with horror
at the actions of the believers in another. Horror, because from
a disagreeing point of view all the great potentialities of the
race were being channeled into a false and confining blind
alley. In fact. it is from the history of the enormous monstrosities
created by false belief that philosophers have realized the ap-
parently infinite and wondrous capacities of human beings. The
dream is to find the open channel.

What, then, is the meaning of it all? What can we say to
dispel the mystery of existence?

If we take everything into account, not only what the an-
cients knew, but all of what we know today that they didn't
know, then I think that we must frankly admit that we do
not know.

But, in admitting this, we have probably found the open
channel.

This is not a new idea; this is the idea of the age of reason.
This is the philosophy that guided the men who made the
democracy that we live under. The idea that no one really knew
how to run a government led to the idea that we should ar-
range a system by which new ideas could be developed, tried
out, tossed out, more new ideas brought in; a trial and error
system. This method was a result of the fact that science was
already showing itself to be a successful venture at the end
of the 18th century. Even then it was clear to socially-minded
people that the openness of the possibilities was an opportunity,
and that doubt and discussion were essential to progress into
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the unknown. If we want to solve a problem that we have
never solved before, we must leave the door to the unknown
ajar.

OUR RESPONSIBILITY AS SCIENTISTS

We are at the very beginning of tune for the human race.
It is not unreasonable that we grapple w ith problems. There
are tens of thousands of years in the future. Our responsibility
is to do what we can, learn what we can, improve the solutions
and pass them on. It is our responsibility to leave the men of
the future a free hand. In the impetuous youth of humanity,
we can make grave errors that can stunt our growth for a long
time. This we will do if we say we have the answers now, so
yoing and ignorant; if we suppress all discussion, all criticism,
saying, "This is it, boys, man is saved!" and thus doom man for
a long time to the chains of authority, confined to the limits
of our present imagination. It has been done so many times
before.

It is our responsibility as scientists, knowing the great prog-
ress and great value of a satisfactory philosophy of ignorance,
the great progress that is the fruit of freedom of thought, to
proclaim the value of this freedom, to teach how doubt is not
tc be feared but welcomed and discussed, and to demand this
freedom as our dui; to all coming generations.
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Close Reasoning

Fred Hoyle

1957

It is curious in how great a degree human
progress depends on the individual. Humans, numbered in
thousands of millions, seem organised into an ant-like so-
ciety. Yet this is not so. New ideas, the impetus of all
development, come from individual people, not from cor-
porations or states. New ideas, fragile as spring flowers,
easily bruised by the tread of the multitude, may yet be
cherished by the solitary wanderer.

Among the vast host that experienced the coming of the
Cloud, none except Kingsley arrived at a coherent under-
standing of its real nature, none except Kingsley gave the
reason for the visit of the Cloud to the solar system. His first
bald statement was greeted with outright disbelief even by
his fellow scientistsAlexandrov ;,accepted.

Weichart was frank in his opinion.
"The whole idea is quite ridiculous," he said.

. Marlowe shook his head.
"This comes of reading science fiction."
"No bloody fiction about Cloud coming straight for

dam' Sun. No bloody fiction about Cloud stopping. No
bloody fiction about ionisation," growled Alexandrov.

McNeil, the physician, was intrigued. The new develop-
ment was more in his line than transmitters and aerials.

"I'd like to know, Chris, what you mean in this context
by the word 'alive.' "

"Well, John, you know better than I do that the distinc-
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tion between animate and inanimate is more a matter of
verbal convenience than anything else. By and large, inani-
mate matter has a simple structure and comparatively
simple properties. Animate or living matter an the other
hand has a highly complicated structure and is capable of
very involved behaviour. When I said the Cloud may be
alive I meant that the material inside it may be organised
in an intricate fashion, so that its behaviour and conse-
quently the behaviour of the whole Cloud is far more
complex than we previously supposed."

"Isn't there an element of tautology there?' from
Weichart.

"I said that words such as 'animate' and 'inanimate'
are only verbal conveniences. If they're pushed too far they
do appear tautological. In more scientific terms I expect the
chemistry of the interior of the Cloud to be extremely
complicatedcomplicated molecules, complicated structures
built out of molecules, complicated nervous activity. In
short I think the Cloud has a brain."

"A dam' straightforward conclusion," nodded Alexan-
drov.

When the laugh had subsided, Marlowe turned to Kings-
ley.

"Well, Chris, we know what you mean, at any rate we
know near enough. Now let's have your argument. Take
your time. Let's have it point by point, and it'd better be
good."

"Very well then, here goes. Point number one, the tem
perature inside the Cloud is suited to the formation of
highly complicated molecules."

"Right! First point to you. In fact, the temperature is
perhaps a little more favourable than it is here on the
Earth."

"Second point, conditions are favourable to the forma-
tion of extensive structures built out of complicated mole-
cules."

"Why should that be so?" asked Yvette Hedelfort.
"Adhesion on the surface of solid particles. The density

inside the Cloud is so high that quite large lumps of solid
materialprobably mostly ordinary iceare almost certainly
to be found inside it. I suggest that the complicated mole-
cules get together when they happen to stick to the surfaces
of these lumps."

10
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"A very good point, Chris," agreed Marlowe.
"Sorry, I don't pass this round." McNeil was shaking

his head. You talk of complicated molecules being built
up by sticking together on the surface of solid bodies. Well,
it won't do. The molecules out of which living material is
made contain large stores of internal energy. Indeed, the
processes of life depend on this internal energy. The trou-
ble with our sticking together is that you don't get energy
into the n.31ecules that way."

Kingsley seemed unperturbed.
"And from what source do the molecules of living crea-

tures here on the Earth get their internal supplies of en-
ergy?" he asked McNeil.

"Plants get it from sunlight, and animals get it from
plants, or from other animals of course. So in the last
analysis the energy always comes from the Sun."

"And where is the Cloud getting energy from now?"
The tables were turned. And as neither McNeil nor any-

one else seemed disposed to argue, Kingsley went on:
"Let's accept John's argument. Let's suppose that my

beast in the Cloud is built out of the same sort of molecules
that we are. Then the light from some star is required in
order that the molecules be formed. Well, of course star-
light is available far out in the space between the stars, but
it's very feeble. So to get a really strong supply of light the
beast would need to approach close to some star. And
that's just what the beast has donel"

Marlowe became excited.
"My God, that ties three things together, straight away.

The need for sunlight, number one. The Cloud making a
bee-line for the Sun, number two. The Cloud stopping
when it reached the Sun, number three. Very good,
Chris."

"It is a very good beginning, yes, but it leaves some
things obscure," Yvette Hedelfort remarked. "J do not
see," she went on, "how it was that the Cloud came to be
out in space. If it has need of sunlight or starlight, surely it
would stay always around one star. Do you suppose that
this beast of yours has just been born somewhere out in
space and has now come to attach itse:t to our Sun?"

"And while you're about it, Chris, will you explain how
your friend the beast controls its ..upplies of energy? How
did it manage to fire off those blobs of gas with such

Close Reasoning
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fantastic speed when it was slowing down?" asked Leices-
ter.

"One question at a time! I'll take Harry's first, because
it's probably easier. We tried to explain the expulsion of
those blobs of gas in terms of magnetic fields, and the expla-
nation simply didn't work. The trouble was that the re-
quired fields would be so intense that they'd simply burst
the whole Cloud apart. Stated somewhat differently, we
couldn't find any way in which large quantities of energy
could be localised through a magnetic agency in compara-
tively small regions. But let's now look at the problem
from this new point of view. Let's begin by asking what
method we ourselves would use to produce intense local
concentrations of energy."

"Explosions!" gasped Barnett.
"That's right, explosions, either by nuclear fission, or

more probably by nuclear fusion. There's no shortage of
hydrogen in this Cloud."

"Are you being serious, Chris?"
"Of course I'm being serious. If I'm right in supposing

that some beast inhabits the Cloud, then why shouldn't he
be at least as intelligent as we are?"

"There's the slight difficulty of radioactive products.
Wouldn't these be extremely deleterious to living ma-
terial?" asked McNeil.

"If they could get at the living material, certainly they
would. But although it isn't possible to produce explosions
with magnetic fields, it is possible to prevent two samples of
material mixing with each other. I imagine that the beast
orders the material of the Cloud magnetically, that by
means of magnetic fields he can move samples of material
wherever he wants inside the Cloud. I imagine that he takes
very good care to keep ate radioactive gas well separated
from the living materialremember I'm using the term
'living' for verbal convenience. I'm not going to be drawn
into a philosophical argument about it."

"You know, Kingsley," said Weichart, "this is going
far better than I thought it would. What I suppose you
would say is that whereas basically we assemble materials
with our hands, or with the aid of machines that we have
made with our hands, the beast assembles materials with
the aid of magnetic energy."

"That's the general idea. And I must add that the beast

12
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seems to me to have far the better of it. For one thing he's
got vastly more energy to play with than we have."

"My God, I should think so, billions of times more, at
ute very least," said Marlowe. "It's beginning to look,
Chris, as if you're winning this argument. But we objectors
over here in this corner are pinning our faith to Yvette's
question. It seems to me a very good one. What can you
offer in answer to it?"

"It is a very good question, Geoff, and I don't know
that I can give a really convincing answer. The sort of idea
I've got is that perhaps the beast can't stay for very long
in the close proximity of a star. Perhaps he comes in pe-
riodically to some star or other, builds his molecules, which
form his food supply as it were, and then pushes off again.
Perhaps he does this time and time again."

"But why shouldn't the beast be able to stay perma-
nently near a star?"

"Well, an ordinary common or garden cloud, a beastless
cloud, if it were permanently near a star, would gradually
condense into a compact body, or into a number of com-
pact bodies. Indeed, as we all know, our Earth probably
condensed at one time from just such a cloud. Obviously
our friend the beast would find it extremely embarrassing to
have his protective Cloud condense into a planet. So
equally obviously he'll decide to push off before there's
any danger of that happening. And when he pushes off
he'll take his Cloud with him."

"Have you any idea of how long that will be?" asked
Parkinson.

"None at all. I suggest that the beast will push off
when he's finished recharging his food supply. That might
be a matter of weeks, months, years, millennia for all I
know."

"Don't I detect a slight smell of rat in all this?"
Barnett remarked.

"Possibly. I don't know how keen your sense of smell is,
Bill. What's your trouble?"

"I've got lots of troubles. I should have thought that
your remarks about condensing into a planet apply only to
an inanimate cloud. If we grant that the Cloud is able to
control the distribution of material within itself, then it
could easily prevent condensation from taking place. After
all, condensation must be a sgrt of stability process and I

C10'.i_ R:Oi)soning
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would have thought that quite a moderate deg-ee of con-
trol on the part of your beast could prevent any condensa-
tion at all."

"There are two replies to that. One is that I believe the
beast will lose his control if he stays too long near the Sun.
If he stays too long, the magnetic field of the Sun will
penetrate into the Cloud. Then the rotation of the Cloud
round the Sun will twist up the magnetic field to blazes. All
control would then be lost."

"My God, that's an excellent point."
"It is, isn't it? And here's another one. However dif-

ferent OUT beast is to life here on Earth, one point he
must have in common with us. We must both obey the
simple biological rules of selection and development. By
that I mean that we can't suppose that the Cloud started
off by containing a fully-fledged beast. It must have started
with small beginnings, just as life here on Earth started
with small beginnings. So to start with there would be no
intricate control over the distribution of material in the
Cloud. Hence if the Cloud had originally been situated
close to a star, it could not have prevented condensation
into a planet or into a number of planets."

"Then how do you visualise the early beginnings?"
"As something that happened far out in interstellar

space. To begin with, life in the Cloud must have depended
on the general radiation field of the stars. Even that would
give it more radiation for molecule-building purposes than
life on the Earth gets. Then I imagine that as intelligence
developed it would be discovered that food suppliesi.e.
molecule-buildingcould be enormously increased by mov-
ing in close to a star for a comparatively brief period.
As I see it, the beast must be essentially a denizen of
interstellar space. Now, Bill, have you any more troubles?"

"Well, yes, I've got another problem. Why can't the
Cloud manufacture its own radiation? Why bother to
come in close to a star? If it understands nuclear fusion to
the point of producing gigantic explosions, why not use
nuclear fusion for producing its supply of radiation?"

"To produce radiation in a controlled fashion requires a
slow reactor, and of course that's just what a star is. The
Sun is just a gigantic slow nuclear fusion reactor. To pro-
duce radiation on any real scale comparable with the Sun,



the Cloud would have to make itself into a star. Then the
beast would get masted. It'd be much too but inside."

"Even then I doubt whether a cloud of this mass could
produce very much radiation," remarked Marlowe. "Its
mass is much too small. According to the mass-luminosity
relation it'd be down as compared with the Sun by a
fantastic amount. No, you're barking up a wrong tree
there, Bill."

"I've a question that I'd like to ask," said Parkinson.
"Why do you always refer to your beast in the singular?
Why shouldn't there be lots of lit,le beasts in the
Cloud?"

"I have a reason for that, but it'll take quite a while to
explain."

"Well, it looks as if we're not going to get much sleep
tonight, so you'd better carry on."

"Then let's start by supposing that the Cloud contains
lots of little beasts instead of one big beast. I think you'll
grant me that communication must have developed be-
tween the different individuals."

"Certainly."
"Then what form will the communication take?"
"You're supposed to be telling us, Chris."
"My question was purely rhetorical. I suggest that com-

munication would be impossible by our methods. We com-
municate acoustically."

"You mean by talking. That's certainly your method all
right, Chris," said Ann Halsey.

But the point was lost on Kingsley. He went on.
"Any attempt to use sound would be drowned by the

enormous amount of background noise that must exist in-
side the Cloud. It would be far worse than trying to talk in
a roaring gale. I think we can be pretty sure that communi-
cation would have to take place electrically."

"That seems fair enough."
"Good. Well, the next point is that by our standards the

distances between the individuals would be very large, since
the Cloud by our standards is enormously large. It would
obviously be intolerable to rely on essentially D.C. methods
over such distances."

"D.C. methods? Chris, will you please try to avoid jar-
gon."

"Direct current."

Close Reasoning
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"That explains it, I suppose!"
"Oh, the sort of thing we get on the telephone. Roughly

speaking the differetice between D.C. communication and
A.C. communication is the difference between the tele-
phone and radio."

Marlowe grinned at Ann Halsey.
"What Chris is trying to say in his inimitable manner is

that communication must occur by radiative propaga-
tion."

"If you think that makes it clearer. . . ."
"Of course it's clear. Stop being obstructive, Ann. Radi

ative propagation occurs when we emit a light signal or a
radio signal. It travels across space through a vacuum at a
speed of 186,000 miles per second. Even at this speed it
would still take about ten minutes for a signal to travel
across the Cloud.

"My next point is that the volume of information that
can be transmitted radiatively is enormously greater than
the amount that we can communicate by ordinary sound.
We've seen that with our pulsed radio transmitters. So if
this Cloud contains separate individuals, the individuals
must be able to communicate on a vastly more detailed
scale than we can. What we can get across in ar. Lour of
talk they might get across in a hundredth of a second."

"Ah, I begin to see light," broke in McNeil. "If com-
munication occurs on such a scale then it becomes some-
what doubtful wh' r we should talk any more of separate
individuals!"

"You're home, John!"
"But I'm not home," said Parkinson.
"In vulgar parlance," said McNeil amiably, "what

Chris is saying is that individuals in the Cloud, if there are
any, must be highly telepathic, so telepathic that it becomes
rather meaningless to regard them as being really separate
from each other."

"Then why didn't he say so in the first place?"from
Ann Halsey.

"Because like most vulgar parlance, the word 'telepa-
thy' doesn't really mean very much."

"Well, it certainly means a great deal more to me."
"And what does it mean to you, Ann?"
"It means conveying one's thoughts without talking, or



of course without writing or winking or anything like
that."

"In other words it meansif it means anything at all
communication by a non-acoustic medium."

"And that means using radiative propagation,"
chipped in Leicester.

"Arid radiative propagation means the use of alter-
nating currents, not the direct currents and voltages we use
in our brains."

"But I thought we were capable of some degree of
-telepathy," suggested Parkinson.

"Rubbish. Our brains simply don't work the right way
for telepathy. Everything is based on D.C. voltages, and
radiative transmission is impossible that way."

"I know this is -ather a red herring, but I thought these
extrasensory people had established some rather remarkable
correlations," Parkinson persisted.

"Bloody bad science," growled Alexandrov. "Correla-
tions obtained after experiments done is bloody bad. Only
prediction in science."

"I don't follow."
"What Alexis means is that only predictions really count

in science," explained Weichart. "That's the way Kings-
ley downed me an hour or two ago. It's no good doing a
lot of experiments first and then discovering a lot of correla-
tions afterwards, not unless the correlations can be used for
making new predictions. Otherwise it's like betting on a
race after it's been run."

"Kingsley's ideas have many very interesting neurologi-
cal implications," McNeil remarked. "Communication
for us is a matter of extreme difficulty. We ourselves have to
make a translation of the electrical activityessentially D.C.
activityin our brains. To do this quite a bit of the brain is
given over to the control of the lip muscles and of the vocal
cords. Even so our translation is very incomplete. We
don't do too badly perhaps in conveying simple ideas, but
the conveying of emotions is very difficult. Kingsley's little
beasts could, I suppose, convey emotions too, and that's
another reason why it's rather meaningless to talk of sepa-
rate individuals. It's rather terrifying to realise that every-
thing we've been talking about tonight and conveying so
inadequately from one to another could be communicated

Close Reasoning

17



with vastly greater precision and understanding among
Kingsley's little beasts in about a hundredth of a second."

"I'd like to follow the idea of separate individuals a
little further," said Barnett, turning to Kingsley. "Would
you think of each individual in the Cloud as building a
radiative transmitter of some sort?"

"Not as building a transmitter. Let me describe how I
see biological evolution taking place within the Cloud. At
an early stage I think there would be a whole lot of more
or less separate disconnected individuals. Then communica-
tion would develop, not by a deliberate inorganic building
of a means of radiative transmission, but through a slow
biological development. The individuals would develop a
means of radiative transmission as a biological organ, rather
as we have developed a mouth, tongue, lips, and vocal
cords. Communication would improve to a degree that we
can scarcely contemplate. A thought would no sooner be
thought than it would be communicated. An emotion
would no sooner be experienced than it v:ould be shared.
With this would come a submergence of the individual and
an evolution into a coherent whole. The beast, as I visual-
ise it, need not be located in a particular place in the
Cloud. Its different parts may be spread through the
Cloud, but I regard it as a neurological unity, interlocked
by a communication system in which signals are transmitted
back and forth at a speed of 186,000 miles a second."

"We ought to get down to considering those signals
more closely. I suppose they'd have to have a longish
wave-length. Ordinary light presumably would be useless
since the cloud is opaque to it," said Leicester.

"My guess is that the signals are radio waves," went on
Kingsley. "There's a good reason why it should be so. To
be really efficient one must have complete phase control in a
communication system. This can be done with radio waves,
but not so far as we know with shorter wave-lengths."

McNeil was excited.
"Our radio transmissions!" he exclaimed. "They'd have

interfered with the beast's neurological control."
"They would if they'd been allowed to."
"What d'you mean, Chris?"
"Well, the beast hasn't only to contend with our trans-

missions, but with the whole welter of cosmic radio waves.
From all quarters of the Universe there'd be radio waves

18



Close Reasoning

interfering with its neurological activity unless it had devel-
oped some form of protection."

"What sort of protection have you in mind?"
"Electrical discharges in the outer part of the Cloud

causing sufficient ionisation to prevent the entry of external
radio waves. Such a protection would be as essential as the
skull is to the human brain."

Aniseed smoke was rapidly filling the room. Marlowe sud-
denly found his pipe too hot to hold and put it down
gingerly.

"My God, you think this explains the rise of ionisation
in the atmosphere, when we switch on our transmitters?"

"That's the general idea. We were talking earlier on
about a feedback mechanism. That I imagine is just what
the beast has got. If any external waves get in too deeply,
then up go the voltages and away go the discharges until
the waves can get in no farther."

"But the ionisation takes place in our own atmos-
phere."

"For this purpose I think we can regard our atmosphere
as a part of the Cloud. We know from the shimmering of
the night sky that gas extends all the way from the Earth to
the denser parts of the Cloud, the disk-like parts. In short
we're inside the Cloud, electronically speaking. That, I
think, explains our communication troubles. At an earlier
stage, when we were outside the Cloud, the beast didn't
protect itself by ionising our atmosphere, but through its
outer electronic shield. But once we got inside the shield
the discharges began to occur in our own atmosphere. The
beast has been boxing-in our trans:nissions."

"Very fine reasoning, Chris," said Marlowe.
"Hellish fine," nodded Alexandrov.
"How about the one centimetre transmissions? They

went through all right," Weichart objected.
"Although the chain of reasoning is getting rather long

there's a suggestion that one can make on that. I think it's
worth making because it suggests the next action we might
take. It seems to me most unlikely that this Cloud is
unique. Nature doesn't work in unique examples. So let's
suppose there are lots of these beasts inhabiting the Galaxy.
Then I would expect communication to occur between one
cloud and another. This would imply that some wave-
lengths would be required for external o-namunication pur-
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poses, wave-lengths that could penetrate into the Cloud and
would do no neurological harm."

"And you think one centimetre may be such a wave-
length?"

"That's the general idea."
"But then why was there no reply to our one centimetre

transmission?" asked Parkiiibon.
"Perhaps because we sent no message. There'd be no

point in replying to a perfectly blank transmission."
"Then we ought to start sending pulsed messages on the

one centimetre," exclaimed Leicester. "But how "an we
expect the Cloud to decipher them?"

"That's not an urgent problem u begin with. It will be
obvious that our transmissions contain informationthat
will be clear from the frequent repetition of various pat-
terns. As soon as the Cloud realises that our transmissions
have intelligent control behind them I think we can expect
some sort of reply. How long will it take to get started,
Harry? You're not in a position to modulate the one centi-
metre yet, a.e you."

"No, but we can be in a couple of days, if we work
night shifts. I had a sort of presentiment that I wasn't
going to see ivy bed tonight. Come on, chaps, let's get
started."

Leicester stood up, stretched himself, and ambled out.
The meeting broke up. Kingsley took Parkinson on one
side.

"Look, Parkinson," he said, "there's no need to go
gabbling about this until we know more about it."

"Of course not. The Prime Minister suspects I'm off
my hnd as it is."

"There is one thing that you might pass on, though. If
London, Washington, and the rest of the political circus
could get ten centimetre transmitters working, it's just pos-
sible that they might avoid the fade-out trouble."

When Kingsley and Ann Halsey were alone later that
night, Ann remarked:

"How on earth did you come on such an idea, Chris?"
"Well, it's pretty obvious really. The trouble is that

we're all inhibited against such thinking. The idea that the
Earth is the only possible abode of life runs pretty deep in
spite of all the science fiction and kid's comics. If we had
been able to look at the business with an impartial eye we
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should have spotted it long ago. Right from the first, things
have gone wrong and they've gone wrong according to a
systematic sort of pattern. Once I overcame the psychologi-
cal block, I saw all the difficulties could be removed by one
simple and entirely plausible step. One by one the bits of
the puzzle fitted into place. I think Alexandrov probably
had the same idea, only his English is a bit on the terse
side."

"On the bloody terse side, you mean. But seriously, do
you think this communication business will work?"

"I very much hope so. It's quite crucial that it
should."

"Why do you say that?"
"Think of the disasters the Earth has suffered so far,

without the Cloud taking any purposive steps against us. A
bit of reflection from its surface nearly roasted us. A short
obscuration of the Sun nearly froze us. If the merest tiny
fraction of the energy controlled by the Cloud should be
directed against us we should be wiped out, every plant and
animal."

"But why should that happen?"
"How can one tell? Do you think of the tiny beetle or

the ant that you crush under your foot on an afternoon's
walk? One of those gas bullets that hit he Moon three
months ago would finish us. Sooner or later the Cloud will
probably let fly with some more of 'em. Or we might be
electrocuted in some monstrous discharge."

"Could the Cloud really do that?"
"Easily. The energy that it controls is simply monstrous.

If we can get some sort of a message across, then perhaps
the Cloud will take the trouble to avoid crushing us under
its foot."

"But why should it bother?"
"Well, if a beetle were to say to you, 'Please, Miss

Halsey, will you avoid treading here, otherwise I shall be
crushed,' wouldn't you be willing to move your foot a
trifle?"

)se Ht)5soning
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Scientists often stress that there is no single scientific
method. Bridgman emphasizes this freedom to choose
between many pocdures, a fieedom essential to sci-
ence.

3 On Scientific Method

Percy W. Bridgman

1949

IT SEEMS TO ME that there is a good deal of ballyhoo
about scientific method. I venture to think that the
people who talk most about it are the people who
do least about it. Scientific method is what working
scientists do, not what other people or even they
themselves may say about it. No working scientist,
when he plans an experiment in the laboratory, asks
himself whether he is being properly scientific, nor
is he interested in whatever method he may be using
as method, When the scientist ventures to criticize
the work of his fellow scientist, as is not uncommon,
he does not base his criticism on such glittering
generalities as failure to follow the "scientific
methodrbut his criticism is specific, based on some
feature characteristic of the particular situation. The
working scientist is always too much concerned with
getting down to brass tacks to be willing to spend
his time on generalities.

Scientific method is something talked about by
people standing on the outside and wondering how
the scientist manages to do it. These people have
been able to uncover various generalities applicable
to at least most of what the scientist does, but it
seems to me that these generalities are not very pro-

*From The Teaching Scientist, December 1949, written at the
request of the editor.
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found, and could have been anticipated by anyone
who knew enough about scientists to know what is
their primary objective. I think that the objectives
of all scientists have this in commonthat they are
all trying to get the correct answer to the particular
problem in hand. This may be expressed in more
pretentious language as the pursuit of truth. Now if
the answer to the problem is correct there must be
some way of knowing and proving that it is correct
the very meaning of truth implies the possibility
of checking or verification. Hence the necessity for
checking his results always inheres in what the
scientist does. Furthermore, this checking must be
exhaustive, for the truth of a general proposition
may be disproved by a single exceptional case. A
long experience has shown the scientist that various
things are inimical to getting the correct answer. He
has found that it is not sufficient to trust the word
of his neighbor, but that if he wants to be sure, he
must be able to check a result for himself. Hence
the scientist is the enemy of all authoritarianism.
Furthermore, he finds that he often makes mistakes
himself and he must learn how to guard against
them. He cannot permit himself any preconception
as to what sort of results he will get, nor must he
allow himself to be influenced by wishful thinking
or any personal bias. All these things together give
that "objectivity" to science which is often thought
to be the essence of the scientific method.

But to the working scientist himself all this ap-
pears obvious and trite. What appears to him as
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the essence of the situation is that he is not con-
sciously following any prescribed course of action,
but feels complete freedom to utilize any method or
device whatever which in the particular situation
before him seems likely to yield the correct answer.
In his attack on his specific problem he suffers no
inhibitions of precedent or authority, but is com-
pletely free to adopt any course that his ingenuity is
capable of suggesting to him. No one standing on
the outside can predict what the individual scien-
tist will do or what method he will follow. In short,
science is what scientists do, and there are as many
scientific methods as there are individual scientists.

M et n od
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This is 7olya's one-page summary at his book in which
he discusses strategies and techniques for solving prob-
lems. Po lya's examples are from mathematics, but his
ideas are :fseful in solving physics problems also.

4 How to Solve It

George Po lya

1957
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First.

You have to understand
the problem.

Second.

Find the connection between
the data and the unknown.

You may be obliged
to consider auxiliary problems

if an immediate connection
cannot be found.

You should obtain eventually
a plan of the solution.

UNDERSTANDING THE PROBLEM

What is the unknown? What are the data? What is the condition?
Is it possible to satisfy the condition? Is the condition sufficient to
determine the unknown? Or is it insufficient? Or redundant? Or
contradictory?
Draw a figure. Introduce suitable notation.
Separate the various parts of the condition. Can you write them down?

DEVISING A PLAN

Have you seen it before? Or have you seen the same problem in a
slightly different form?
Do you know a related problem? Do you know a theorem that could
be useful?
Look at the unknown! And try to think of a familiar problem having
the same or a similar unknown.
Here is a problem related to yours and solved before. Could you use it?
Could you use its result? Could you use its method? Should you intro-
duce some auxiliary element in order to make its use possible?
Could you restate the problem? Could you restate it still differently?
Go back to definitions.

If you cannot solve the proposed problem try to solve first some related
problem. Could you imagine a more accessible related problem? A
more general problem? A more special problem? An analogous problem?
Could you solve a part of the problem? Keep only a part of the condi-
tion, drop the other part; how far is the unknown then determined,
how can it vary? Could you derive something useful from the data?
Could you think of other data appropriate to determine the unknown?
Could you change the unknown or the data, or both if necessary, so
that the new unknown and the new data are nearer to each other?
Did you use all the data? Did you use the whole condition? Have you
taken into a: L....int all essential notions involved in the problem?

CARRYING OUT THE PLAN

Third. Carrying out your plan of the solution, check each step. Can you see
Carry out your plan. clearly that the step is correct? Can you prove that it is correct?

Fourth.

Examine the solution obtained.

LOOKING BACK

Can you check the result? Can you check the argument?
Can you derive the result differently? Can you see it at a glance?
Can you use the result, or the method, for some other problem?
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The advice is directed primarily to the student planning
a career in the sciences, but it should be of interest to
a wider group.

5 Four Pieces of Advice to Young People

Warren Weaver

1966

One of the great prerogatives of age is the right to give ad.'ice to the young.
Of course, the other side of the coin is that one of the prerogatives of youth
is to disregard this advice. But... I am going to give you four pieces of ad-
vice, and you may do with all four of them precisely what you see fit.

The first one is this: I urge each one of you not to decide prematurely what
field of science, what specialty of science you are going to make your own.
Science moves very rapidly. Five years from now or ten years from now there
will be opportunities in science which are almost not discernible at the pres-
ent time. And, I think there are also, of course, fads in science. Science
goes all out at any one moment for work in one certain direction and the
other fields are thought of as being rather old-fashioned. But, don't let that
fool you. Sometimes some of these very old problems turn out to be extremely
significant.

May I just remind you that there is no physical entity that the mind of man has
thought about longer than the phenomenon of light. One would ordinarily say
that it would be simply impossible at the present day for someone to sit down
and get a brand new idea about light, because think of the thousands of
scientists that have worked on that subject. And yet, you see this is what
two scientists did only just a few years ago when the loser was invented. They
got a brand new idea about light and it has turned out to be a phenomenally
important idea.

So, I urge you not to make up your minds too narrowly, too soon. Of course,
that means that what you ought to do is to be certain that you get a very solid
basic foundation in science so that you can then adjust yourselves to the
opportunities of the future when they arise. What is that basic foundation?
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Well, of course, you don't expect me to say much more than mathematics, do
you? Because I was originally trained as a mathematician and mathematics is
certainly at the bottom of all this. But I also mean the fundamentals of physics
and the fundamentals of chemistry. These two, incidentally, are almost
indistinguishable nowadays from the fundamentals of biology.

The second piec of advice that I will just mention to you because maybe some
of you are thinking too exclusively in terms of a career in research. In my
judgment there is no life that is possible to be lived on this planet that is more
pleasant and more rewarding than the combined activity of teaching and
research.

I hope very much that many of you look forward to becoming teachers. It is
wonderful life. I don't know of any better one myself, any more pleasant one,
or any more rewarding one. And the almost incredible fact is that they even
pay you for it. And, nowadays, they don't pay you too badly. Ot course,
when I started, they did. But, nowadays, the pay is pretty good.

My third piece of advicemay I urge every single one of you to prepare your-
self not only to be a scientist, but to be a scientist-citizen. You have to
accept the responsibilities of citizenship in a free democracy. And those are
great responsibilities and because of the role which science plays in our modern
world, we need more and more people who understand science but who are also
sensitive to and aware of the responsibilities of citizenship.

And the final piece of advice isand maybe this will surprise you: Do not
overestimate science, do not think that science is all that there is, do not
concentrate so completely on science that you end up by living a warped sort
of life. Science is not all that there is, and science is not capable of solving
all of life's problems. There are also many more very important problems that
science cannot solve.

And so I hope very much there's nobody in this room who is going to spend the
next seven days without reading some poetry. I hope that there's nobody in
this room that's going to spend the next seven days without listening to some
music, some good musk, some modern music, some musk. I hope very much
that there's nobody here who is not interested in the creative arts, Intel ested in
drama, interested in the dance. I hope that you interest yourselves seriously in
religion, because if you do not open your minds and open your activities to this
range of things, you are going to lead too narrow a life.
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The size of an animal is related to such physical factors
as gravity and temperature. For most animals there ap-
pears to be an optimum size.

6 On Being the Right Size

J. B. S. Haldane

1928

From what has already been demonstrated, you can plainly see the impossi-
bility of increasing the size of structures to vast dimensions either in art
or b nature; likewise the impossibility of building ships, palaces, or temples
of enormous size in such a way that their oars, yards, beams, Iron bolts,
and, in short, all their other parts will hold together; nor can nature pro-
duce trees of extraordinary size because the branches would break down
under their own weight, so also it would be impossible to build up the bony
structures of men, horses, or other animals so as to hold together and per-
form their normal functions if these animals were to be increased enor-
mously in height; for this increase in height can be accomplished only by
employing a material which is harder and stronger than usual, or by en-
larging the size of the bones, thus changing their shape until the form and
appearance of the animals suggest a monstrosity. This is perhaps what oi.r
wise Poet had in mind, when he says, in describing a huge giant:

"Impossible it is to reckon his height
So beyond measure is his size." GALILEO GALILEI

THE most obvious differences between different animals are differences
of size, but for some reason the zoologists have paid singularly little atten
tion to them. In a large textbook of zoology before me I find no indication
that the eagle is larger than the sparrow, or the hippopotamus bigger than
the hare, though some grudging admissions are made in the case of the
mouse and the whale. But yet it is easy to show that a hare could not
be as large as a hippopotamus, or a whale as small as a herring. For
every type of animal there is a most convenient size, and a large change
in size inevitably carries with it a change of form.
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Let us take the most obvious of possible cases, and consider a giant man
sixty feet highabout the height of Giant Pope and Giant Pagan in the
illustrated Pilgrim's Progress of my childhood. These monsters were not
only ten times as high as Christian, but ten times as wide and ten times as
thick, so that their total weight was a thousand times his, or about eighty
to ninety tons. Unfortunately the cross sections of their bones were only
a hundred times those of Christian, so that every square inch of giant bone
had to support ten times the weight borne by a square inch of human
bone. As the human thigh-bone breaks under about ten times the human
weight, Pope and Pagan would have broken their thighs every time they
took a step. This was doubtless why they were sitting down in the picture
I remember. But it lessens one's respect for Christian and Jack the Giant
Killer.

To turn to zoology, suppose that a gazelle, a graceful little creature with

long thin legs, is to become large, it will break its bones unless it does one
of two things. It may make its legs short and thick, like the rhinoceros,
so that every pound of weight has still about the same area of bone to
support it. Or it can compress its body and stretch out its legs obliquely to
gain stability, like the giraffe. I mention these two beasts because they
happen to belong to the same order as the gazelle, and both are quite suc-
cessful mechanically, being remarkably fast runners.

Gravity, a mere nuisance to Christian, was a terror to Pope, Pagan,
and Despair. To the mouse and any smaller animal it presents practically
no dangers. You can drop a mouse down a thousand-yard mine shaft;
and, on arriving at the bottom, it gets a slight shock and walks away. A
rat would probably be killed, though it can fall safely from the eleventh
story of a building; a man is killed, a horse splashes. For the resistance
presented to movement by the air is proportional to the surface of the
moving object. Divide an animal's length, breadth, and height each by
ten; its weight is reduced to a thousandth, but its surface only to a hun-
dredth. So the resistance to falling in the case of the small animal is
relatively ten times greater than the driving force.

An insect, therefore, is not afraid of gravity; it can fall without danger,
and can cling to the ceiling with remarkably little trouble. It can go in for
elegant and fantastic forms of support like that of the daddy-long-legs. But
there is a force which is as formidable to an insect as gravitation to a
mammal. This is surface tension. A man coming out of a bath carries with
him a film of water of about one-fiftieth of an inch in thickness. This
weighs roughly a pound. A wet mouse has to carry about its own weight
of water. A wet fly has to lift many times its own weight and, as every
one knows, a fly once wetted by water or any other liquid is in a very
serious position indeed. An insect going for a drink is in as great danger
as a man leaning out over a precipice in search of food. if it once falls
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into the grip of the surface tension of the waterthat is to say, gets wet
it is likely to remain so unt:1 it drowns. A few insects, such as water-
beetles, contrive to be unwettable, the majority keep well away from their
drink by means of a long proboscis.

Of course tall land animals have other difficulties. They have to pump
their blood to greater heights than a man and, therefore, require a larger
blood pressure and tougher blood-vessels. A great many men die from
burst arteries, especially in the brain, and this danger is presumably still
greater for an elephant or a giraffe. But animals of all kinds find difficul-
ties in size for the following reason. A typical small animal, say a micro-
scopic worm or rotifer, has a smooth skin through which all the oxygen
it requires can soak in, a straight gut with sufficient surface to absorb its
food, and a simple kidney. Increase its dimensions tenfold in every direc-
tion, and its weight is increased a thousand times, so that if it is to use
its muscles as efficiently as its miniature counterpart, it will need a thou-
sand times as much food and oxygen per day and will excrete a thousand
times as much of waste products.

Now if its shape is unaltered its surface will be increased only a hun-
dredfold, and ten times as much oxygen must enter per minute through
each square millimetre of skin, ten times as much food through each
square millimetre of intestine. When a limit is reached to their absorptive
powers their surface has to be increased by some special device. For ex-
ample, a part of the skin may be drawn out into tufts to make gills or
pushed in to make lungs, thus increasing the oxygen-absorbing surface in
proportion to the animal's bulk. A man, for example, has a hundred
square yards of lung. Similarly, the gut, instead of being smooth and
straight, becomes coiled and develops a velvety surface, and other organs
increase in complication. The higher animals are not larger than the lower
because they are more complicated. They are more complicated because
they are larger. Just the same is true of plants. The simplest plants, such
as the green algae growing in stagnant water or on the bark of trees, are
mere round cells. The higher plants increase their surface by putting out
leaves and roots. Comparative anatomy is largely the story of the struggle
to increase surface in proportion to volume.

Some of the methods of increasing the surface are useful up to a point,
but not capable of a very wide adaptation. For example, while vertebrates
carry the oxygen from the gills or lungs all over the body in the blood
insects take air directly to every part of their body by tiny blind tubes
called tracheae which open to the surface at many different points. Now,
although by their breathing movements they can renew the air in the
outer part of the tracheal system, the oxygen has to penetrate the finer
branches by means of diffusion. Gases can diffuse easily through very
small distances, not many times larger than the average length travelled
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by a gas molecule between collisions with other molecules. But when such
vast journeysfrom the point of view of a moleculeas a quarter of an
inch have to be made, the process becomes slow. So the portions of an
insect's body more than a quarter of an inch from the air would always
be short of oxygen. In consequence hardly any insects are much more
than half an inch thick. Land crabs are built on the same general plan as
insects, but are much clumsier. Yet like ourselves they carry oxygen
around in their blood, and are therefore able to grow far larger than any
insects. If the insects had hit on a plan for driving air through their
tissues instead of letting it soak in, they might well have become as large
as lobsters, though other considerations would have prevented them from
becoming as large as man.

Exactly the same difficulties attach to flying. It is an elementary prin-
ciple of aeronautics that the minimum speed needed to keep an aeroplane
of a given shape in the air varies as the square root of its length. If its
linear dimensions are increased four times, it must fly twice as fast. Now
the power needed for the minimum speed increases more rapidly than the
weight of the machine. So the larger aeroplane, which weighs sixty-four
times as much as the smaller, needs one hundred and twenty-eight times
its horsepower to keep up. Applying the same principles to the birds, we
find that the limit to their size is soon reached. An angel whose muscles
developed no more power weight for weight than those of an eagle or a
pigeon would require a breast projecting for about four feet to house the
muscles engaged in working its wings, while to economize in weight, its
legs would have to be reduced to mere stilts. Actually a large bird such as
an eagle or kite does not keep in the air mainly by moving its wings. It
is generally to be seen soaring, that is to say balanced on a rising column
of air. And even soaring becomes more and more difficult with increasing
size. Were this not the case eagles might be as large as tigers and as
formidable to man as hostile aeroplanes.

But it is time that we passed to some of the advantages of size. One
of the most obvious is that it enables one to keep warm. All warm-blooded
animals at res+ lose the same amount of heat from a unit area of skin, for
which purpose they need a food-supply proportional to their surface and
not to their weight. Five thousand mice weigh as much as a man. Their
combined surface and food or oxygen consumption are about seventeen
times a man's. In fact a mouse eats about one quarter its own weight of
food every day, which is mainly used in keeping it warm. For the same
reason small animals cannot live in cold countries. In the arctic regions
there are no reptiles or amphibians, and no small mammals. The smallest
mammal in Spitzbergen is the fox. The small birds fly away in the winter,
while the insects die, though their eggs can survive six months or more
of frost. The most successful mammals are bears, seals, and walruses.
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On Being the Right Size

Similarly, the eye is a rather inefficient organ until it reaches a large
size. The back of the human eye on which an image of the outside world
is thrown, and which corresponds to the film of a ...rnera, is composed
of a mosaic of 'rods and cones' whose diameter is little more than a length
of an average light wave. Each eye has about half a million, and for two
objects to be distinguishable their images must fall on separate rods or
cones. It is obvious that with fewer but larger rods and cones we should
see less distinctly. If they were twice as broad two points would have to be
twice as far apart before we could distinguish them at a given distance.
But if their size were diminished and their number increased we should
see no better. For it is impossible to form a definite image smaller than a
wave-length of light. Hence a mouse's eye is not a small-scale model of a
human eye. Its rods and cones are not much smaller than ours, and there-
fore there are far fewer of them. A mouse could not distinguish one
human face from another six feet away. In order that they should be of
any use at all the eyes of small animals have to be much larger in pro-
portion to their bodies than our own. Large animals on the other hand
only require relatively small eyes, and those of the whale and elephant
art: little larger than our own.

For rather more recondite reasons the same general principle holds
true of the brain. If we compare the brain-weights of a set of very similar
animals such as the cat, cheetah, leopard, and tiger, we find that as we
quadruple the body-weight the brain-weight is only doubled. The larger
animal with proportionately larger bones can economize on brain, eyes,
and certain other organs.

Such are a very few of the considerations which show that for every
type of animal there is an optimum size. Yet although Galileo demon-
strated the contrary more than three hundred years ago, people still
believe that if a flea were as large as a man it could jump a thousand feet
into the air. As a matter of fact the height to which an animal can jump
is more nearly independent of its size than proportional to it. A flea can
jump about two feet, a man about five. To jump a given height, if we
neglect the resistance of the air, requires an expenditure of energy pro-
portional to the jumper's weight. But if the jumping muscles form a
constant fraction of the animal's body, the energy developed per ounce of
muscle is independent of the size, provided it can be developed quickly
enough in the small animal. As a matter of fact an insect's muscles, al-
though they can contract more quickly tha. ar own, appear to be
less efficient; as otherwise a flea or grasshoppe could rise six feet into
the air.

And just as there is a best size for every animal, so the same is true
for every human institution. In the Greek type of democracy all the citi-
zens could listen to a series of orators and vote :firectly on questions of
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legislation. Hence their philosophers held that a small city was the largest
possible democratic state. The English invention of representative gov-
ernment made a democratic nation possible, and the possibility was first
realized in the United States, and later elsewhere. With the development
of broadcasting it has once more become possible for every citizen to
listen to the political views of representative orators, and the future may
perhaps see the return of the nation to to the Greek form of democ-
racy. Even the referendum has been ma e possible only by the institution
of daily newspapers.

To the biologist the problem of socialism appears largely as a problem
of size. The extreme socialists desire to run every nation as a single busi-
ness concern. I do not suppose that Henry Ford would find much diffi-
culty in running Andorra or Luxembourg on a socialistic basis. He has
already more men on his pay-roll than their population. It is conceivable

that a syndicate of Fords, if we could find them, would make Belgium Ltd.
or Denmark Inc. pay their way. But while nationalization of certain in-
dustries is an obvious possibility in the largest of states, I find it no easier
to picture a completely socialized British Empire or United States than
an elephant turning somersaults or a hippopotamus jumping a hedge.
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Not only the scientist is interested in motion. This ar-
ticle comments briefly on references to motion in poetry.

7 Motion in Words

James B. Gerhart and Rudi H. Nussbaum

1966

Man began describing movement
with words long before there were
physicists to reduce motion to laws.
Our age-old fascination with moving
things is attested to by the astonish-
ing number of words we have for motion.
We have all kinds of words for all
kinds of movement special words for
going up, others for coming down; words
for fast motion, words for slow motion.
A thing going up may rise, ascend,
climb, or spring. Going down again, it
may fall or descend; sink, subside, or
settle; dive or drop; plunge or plop;
topple, totter, or merely droop. It
may twirl, whirl, turn and circle;
rotate, gyrate; twist or spin; roll,
resolve and wheel. It may oscillate,
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vibrate, tremble and shake; tumble or
toss, pitch or sway; flqtter, jiggle,
quiver, quake; or lurch, or wobble,
or even palpitate. All these words
tell some motion, yet every one has
its own character. Some of them you
use over and over in a single day.
Others you may merely recognize. And
still they are but a few of our words
for motion. There are special words
for the motions of particular things.
Horses, for example, trot and gallop
and canter while men run, or stride,
or saunter. Babies crawl and creep.
Tides ebb and flow, balls bounce, arm-
ies march. Other words tell the qual-
ity of motion, words like swift or
fleet, like calm and slow.

Writers draw vivid mental pictures
for the reader with words alone. Here
is a poet's description of air flowing
across a field on a hot day

There came a wind like a bugle:
It quivered through the grass,
and a green chill upon the heat
so,eminous did pass.

Emily Dickinson

Or again, the motion of the sea caused
by the gravitational attraction of the
moon

The western tide crept up along
the sand,

ana o'er and o'er tie sand,
and round and round the sand,
as far as the eye could see.

Charles Kingsley,
The Sands of Dee

Or, swans starting into flight:

I saw . . . all suddenly mount
and scatter wheeling in great

broken rings
upon their clamorous wings.

W. B. Yeats,
The Wild Swans at Coole

Sometimes just a single sentence will
convey the whole idea of motion:

38

Lightly stepped a yellow star
to its lofty place

Emily Dickinson

Or, this description of a ship sailing:

She walks the water like a thing
of life

Byron, The Corsair

How is it that these poets de-
scribe motion? They recall to us,what
Ne have seen; they compare different
things through simile and metaphor;
trey rely on the reader to share their

(mil emotions, and they invite him to
recreate an image of motion in his own
mind. The poet has his own precision
which is not the scientist's precision.
Emily Dickinson well knew it was the
grass, not the wind, that quivered,
and that stars don't step. Byron never
saw a walking boat. But this is irrel-
evant. All of us can appre.,iate and
enjoy their rich images and see that
they are true to the nature of man's
perception, if not to the nature of
motion itself.

From time to time a physicist
reading poetry will find a poem which
describes something that he has
learned to be of significance to his,

the physicist's description. Here is
an example:

A ball will bounce, but less and
less. It's not a light-hearted
thing, resents its own resilience.
Falling is what it loves, . . .

Richard Wilbur, Juggler

Belativity is implicit in this next
example:

The earth revolves with me, yet
makes no motion.

The stars pale silently in a coral
sky.

In a whistling void I stand before
my mirror unconcerned, and tie
my tie.

Conrad Aiken,

Morning Song of Senlin



Fig. 1.10 Multiple-flash photograph show-
ing the precession of a top.

The poet's description of motion
is a rich, whole vision, filled with
both his perceptions and his response:.
Yet complete as it is, the poetic de-
scription is far from the scientific
one. Indeed, when we compare them, it
is easy to forget they deal with the
same things. Just how does the scien-
tific view of motion differ? And to
that purpose? Let's try to answer
these questions by shifting slowly
from the poet's description to the
scientist's. As a first step, read
this excerpt from a biography of a
physicist of the last century, Lord
Kelvin. The biographer is trying to
convey the electric quality of Kelvin's
lectures to his University classes. He
describes a lecture on tops (referred
to as gyrostats here):

The vivacity and enthusiasm of the
Professor at that time was very
great. The animation of his coun-
tenance as he looked at a gyrostat
spinning, standing on a knife edge
on a glass plate in front of him,
and leaning over so that its center
of gravity was on one side of the
point of support; the delight with
which he showed that hurrying of

Motion in Words

the precessional motion caused the
gyrostat to rise, and retarding the
precessional motion caused the gy-
rostat to fall, so that the freedom
to precess was the secret of its
not falling; the immediate applica-
tion of the study of the gyrostat
to the explanation of the preces-
sion of the equinoxes, and illustra-
tion by a model . . . all these
delighted his hearers, and made the
lecture memorable.

Andrew Gray, Lord Kelvin, An
Account of his Scientific

Life and Work

This paragraph by Gray deals with
motion, but still it is more concerned
with human responses - Kelvin's obvi-
ous pleasure in watching the top, and
his student's evident delight in watch-
ing both Kelvin and Kelvin's top. At
the same time it says much about the
top's movement, hints at the reasons
behind it, and mentions how under-
standing the top has led to under-
standing the precession of the earth's
axis in space.

Gray used some of the everyday
words for motion: rise, fall, spin,
hurry, retard. But he used other words
and other phrases, too - more techni-
cal, less familiar precess, center
of gravity, equinoxes. Technical words
are important for a scientific descrip-
tion of motion. When the scientist has
dissected a motion and laid out its
components, the need for new terms
enters, the need for words with more
precise meanings, words not clothed
with connotations of emotional re-
sponse. Still, the scientist never can
(and never really wants to), lose the
connotations of common words entirely.
For example, here is Lord Kelvin's at-
tempt to define precession (see Fig.
1.10), in the sense that Gray used it:

This we call positive precessional
rotation. It is the case of a com-
mon spinning-top (peery), spinning
on a very fine point which remains
at rest in a hollow or hole bored
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by itself; not sleeping upright,

nor nodding, but sweeping its axis
,ound in a circular cone whose
axis is vertical.

William Thomson (Lord Kelvin)
and P. G. Tait, Treatise

on Natural Philosophy

This definition is interesting in
several ways. For one thing, it seems
strange today that Kelvin, a Scot,
should feel the need to explain "spin-
ning-top" by adding "beery," an ob-
scure word to most of us, but one that
Kelvin evidently thought more collo-
quial. Think for a moment of how
Kelvin went about his definition. He
used the words of boys spinning tops
for fun, who then, and still today,
say a top sleeps when its axis is

nearly straight up, and that it nods
as it slows and finally falls. He re-
minded his readers of something they
all had seen and of the everyday words
for it. (He obviously assumed that

most of his readers once played with
tops.) In fact, this is the best way
to define new words - to remind the
reader of something he knows already
and with words he might use himself.
Having once given this definition

Kelvin never returns to the picture he
employed. It is clear, though, that
when he wrote, "positive precessional

rotation," he brought this image to
his own mind, and that he expected his
readers to do the same.

Of course; --1,V,As not necessary to

7
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use as many words as Kelvin did to de-
fine precession. Another, more austere,
and to some, more scientific defini-
tion is this

When the axis of the top travels
round the vertical making a con-
stant angle i with it, the motion
is called steady or precessional.

E. J. Routh, Treatise on the
Dynamics of a System of

Rigid Bodies

All that refers to direct, human ex-
perience is missing here. The top is
now just something with an axis, no
longer a bright-painted toy spinning
on the ground. And it is not the top
that moves, but its axis, an . magined

line in space, and this line moves

about another imagined line, the ver-
tical. There is no poetry here, only
geometry. This is an exact, precise,

and economical definition, but it is

abstract, and incomplete. It does not
describe what anyone watching a real
top sees. In fact, it is only a few
abstractions from the real top's mo-
tion on which the physicist-definer

has concentrated his attention.



The twentieth century arti,t has been able to exploit
his interest in motion in various ways in works of art.

8 Representation of Movement

Gyorgy Kepes

1944

Matter, the physical basis of all spatial experience and thus the source
material of representation, is kinetic in its wry essence. From atomic hap.

penings to cosmic actions, all elements hi nature arc in perpetual interac
Lion in a flux complete. We are living a mobile existedee. The earth
is rotating; the sun is moving; trees are growing; flowers are opening
and closing; clouds are merging, dissolving, coming and going; light and
shadow are hunting each other in an indefatigable play; forms are appear.

ing and disappearing; and man, who is experiencing all this, is himself
subject to all kinetic change. The perception of physical reality cannot
escape the quality of movement. The very understanding of spatial facts,

the meaning of extension or distances, involves the notion of timea
fusion of spacetime which is movement. "Nobody has ever noticed a
place except at a time or a time except at a place;' said Minkowsky in his
Principles of Relativity.

The sources of movement perception

As in a wild jungle one cuts new paths in order to progress further, man
builds roads of perception on which he is able to approach the mobile
world, to discover order in its relationships. To build these avenues of
perceptual grasp lie relies on certain natural factors. One is the nature
of the retina, the sensitive surface on which the mobile panorama is pro-
jected. The second is the sense of movement of his bodythe kinesthetic
sensations of his eye muscles, limbs. head, which have a direct correspond

ence with the happenings around him. The third is the memory association

of past experience, visual and nonvisual; his knowledge about the laws
of the physical nature of the surrounding objectorld.
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The shift of the retinal image

We perceive any successive stimulation of the retinal receptors as move

ment, because such progressive stimulations are in dynamic interaction

with fixed stimulations, and therefore the two different types of stimulation

can be perceived in a unified whole only as a dynamic process, movement.

If the retina is stimulated with stationary impacts that follow one another

in rapid succession, the same sensation of optical movement is induced.

Advertising displays with their rapidly flashing electric bulbs are per.
c.tived in continuity through the persistence of vision and therefore pro-

duce the sensation of movement, although the spatial position of the light

bulbs is stationary. The movement in the motion picture is based upon
the same source of the visual perception.

The changes of any optical data indicating spatial relationships, such as

size, shape, direction, interval, brightness, clearness, color, imply motion.

If the retinal image of any of these signs undergoes continuous regular

change, expansion or contraction, progression or graduation, one per-
ceives an approaching or receding, expanding or contracting moven.ent. If

one sees a growing or disappearing distance between these signs, he
perceives a horizontal or vertical movement.

"Suppose for instance, that a person is standing still in a thick woods,

where it is impossible for him to distinguish, except vaguely and roughly

in a mass of foliage and branches all around him, what belongs to one

tree and what to another, and how far the trees are separated. The moment

he begins to move forward, however, everything disentangles itself and

immediately he gets an apperception of the content of the woods and the

relationships of objects to each other in space."'

From a moving train, the closer the object the faster it seems to move. A

faraway object moves slowly and one very remote appears to be station.

ary. The same phenomenon, with a lower relative velocity, may be noticed

in walking, and with a still higher velocity in a landing aeroplane or in a

moving elevator.

The role of relative velocily

The velocity of motion has an important conditioning effect. Motion
can be too fast or too slow to be perceived as such by our limited sensory

receiving set. The growth of trees or of man, the opening of flowers, the

evaporation of water are movements beyond the threshold of ordinary

visual grasp. One does not see the movement of the hand of a watch. of

a ship on a distant horizon. An aeroplane in the highest sky seems to

hang motionless. No one can see the traveling of light as such. In certain

less rapid motions beyond the visual grasp, one is able, however, to
observe the optical transformation of movement into the illusion of a

solid. A rapidly whirled torch loses its characteristic physical extension,
but it subinerges into another threedimensionalappearing solidinto the

virtual volume of a cone or a sphere. Our inability to distinguish sharply

beyond a certain interval of optical impacts makes the visual impressions

a blur which serves as a bridge to a new optical form. The degree of
velocity of its movement will determine the apparent density of that new
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Representation of Movement

form. The optical density of the visible world is in a great degree con.

ditioned by our visual ability, which has its particular limitations.

The kinesthetic sensation

When a moving object comes into the visual field, one pursues it by a

corresponding movement of his eyes, keeping it in a stationary or nearly
stationary position on the retina. Retinal stimulation, then. cannot alone

account for the sensation of movement. Movementxperience, which is

undeniably present in such a case. is induced by the sensation of muscle

movements. Each individual musclefibre contains a nerve end, which
registers every movement the muscle makes. That we are able to sense
space in the dark, evaluate directiodistances in the absence of contacted

bodies, is due to this muscular sensationthe kinesthetic sensation.

Helmholtz, Physiological Optics

E. G. Lukat. Ir
from Herbert Bayer De 4gn Class

Pant Hand. Cover Design

H. I.. Carpenter. hlovetnent

Work done for the author's course in Visual Fundamental,

Memory rources

Experience teaches man to distinguish things and to evaluate their physb
cal properties. He knows that bodies have weight: unsupported they
will of necessity fall. When, therefore, he aces in midair a body he
knows to be heavy, he automatically associates the direction and velocity

of its downward course. One is also accustomed to seeing small objects

as more mobile than large ones. A mail is more mobile than a mountain;
a bird is more frequently in motion than a tree, the sky. of other visible
units in its background. Everything that one experiences is perceived in
a polar unity in which one pole is accepted as a <tationary background
and the other as a mobile, changing figure.
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'through all history painters hack hied to suggest movement on the
stationary picture surface, to translate sonic of the optical signs of move

mentexperiem into terms of the picture.image. Their efforts, howeser,

have been isolated attempts in which one or the other sources of move.

mentexperience were drawn upon: the shift of the retinal image, the
kinesthetic experience, or the memory of past experiences were suggested

twodimensional terms.

These ath mos were conditioned mulls in the habit of using things
as the basic measuring unit for esers event in nature. The constant

harat teristics of the things and objects. first of all the human body,
animals. sun. moon, clouds, or trees. were used as the first fixed points of

reference in seeking relationships in the optical turmoil of happenings.

Hun efore. painters tried first to represent motion by suggesting the
s isible modifications of objects in movement. They knew the visual
harm teristics of stational-) objects and therefore ei y observable change

sersed to suggest moseinent. The prehistoric artist knew his animals,
knew, for example, how many legs they had. But when he saw an
animal in really speedy movement. he could not escape seeing the visual

modification of the known spatial rharaeteristies. The painter of the
ltamiro eases who pictures a running reindeer with numerous legs, or

the twentieth «mtury cartoonist picturing a 1110%111g face with many
superimposed profiles, is stating a relationship between what lie knows and

what he sees.

°the: painters, seeking to indicate 1110% ement. utilized the expressise

tortion of the moving bodies. Michaelangelm Goya, nil also Tintoretto,

In elongating and stretching the figure, showed distortion of the face
under the expression of strains of action and mobilized numerous other

less ehological references to suggest action.

The smallest movement is more possessn e of the attention than the
greatest wealth of relatidcly stationars oiled.. Painters of many different

periods observed this well and explored it creatively. The optical vitality

of the moving units they emphasized by dynamic outlines. by a vehement

interplay of s igorous contrast of light and dark, and by extreme contrast

of colors. In clarions paintings of Tintoretto. Maffei, Veronese, and Goya,

the optical wealth and intensity of the moving figures are juxtaposed
against the submissise, neutral. visual pattern of the stationary back.
ground.
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Representation of Movement

I larunobu. Wind, Dm Under Willow
Courtev of The 4rt Institute of Chicago

Maffei. Painting

The cream e exploitation of the successive stimulations of the retinal

receptors in terms of the picture surface was another device many painters

found useful. Linear continuance arrests the attention and forces the eye

into a pursuit mos einem. The eye. following the line, acts as if it were

on the path of a moving thing and attributes to the line the qualits of
num ement. When the Greek sculptors organized the drapery of their
figures which they represented in motion, the lines were conceived as
optical forces making the eye pursue their direction.

We know that a heat), object in a background that does not offer sub.

..tantial resistance will fall. Seeing such an object we Interpret it as action.

We make a kind of psychological qualification. Et cry object seen and in
terpreted in a frame of reference of gravitation is endowed with potential

action and could appear as falling, rolling. 'nosing. Because we custom.

arily assume an identity between the horizontal and vertical directions on

the picture surface and the main directions of space as we perceive them

III our es cry day experiences. ccer placing of an object representation on

the picture surface which contradicts the center of gravity, the main three.

tion of spacethe horizontal or vertical aKiscauses that object to appear

to be in action. Top and bottom of the picture surface lime a significance
in this respect.
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Representation of Movement

Whereas the visual representation of depth had found various complete
systems, such as linear perspective, modelling by shading, a parallel devel-

opment had never taken place in the visual representation of motion
Possibly this has been because the tempo of life was comparatively slow,
therefore, the ordering and representation of events could be compressed

without serious repercussions in static formulations. Events were meas-
ured by things, static forms identical with themselves, in a perpetual
fixity. But this static point of view lost all semblance of validity when
daily experiences bombarded man with a velocity of visual impacts in
which the fixity of the things, their self-identity, seemed to melt away.
The more complex life became, the more dynamic relationships confronted

man, in general and in particular, as visual experiences, the more neces-
sary it became to revaluate the old relative conceptions about the fixity of

things and to look for a new way of seeing that could interpret man's
surroundings in their change. It was no accident that ow age made the
first serious search for a reformulation of the events in nature into
dynamic terms. This reformulation of our ideas about the world included
almost all the aspects one perceives. The interpretation of the objective
world in the terms of physics, the understanding of the living organism,
the reading of the inner nunement of social processes, and the visual
interpretation of events were, and still are, struggling for a new gauge
elastic enough to expand and contract in following the dynamic changes
of events.

The influence of the technological conditions

The environment of the man living today has a complexity which cannot

be compared with any environment of any previous age. The skyscrapers,

the street with its kaleidoscopic vibration of colors, the window-displays
with their multiple mirroring images, the street cars and motor cars,
produce a dynamic simultaneity of visual impression which cannot be
perceived in the terms of inherited visual habits. In this optical turmoil
the fixed objects appear utterly insufficient as the measuring tape of the
events. The artificial light, the flashing of electric bulbs, and the mobile
game of the many new types of light-sources bombard man with kinetic
color sensations having a keyboard never before experienced. Man,

the spectator, is himself more mobile than ever before. He rides in street-

cars, motorcars and aeroplanes and his own motion gives to optical impacts

a tempo far beyond the threshold of a clear object-perception. The ma-
chine man operates adds its own demand for a new way of seeing. The
complicated interactions of its mechanical parts cannot be conceived in a

static way; they must be perceived by understanding of their movements.

The motion picture, television, and, in a great degree, the radio, require
a new thinking, i.e., seeing, that takes into account qualities of change,
interpenetration and simultaneity.
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Man can face with success this intricate pattern of the optical omits only
as he can deselop a speed in his perception to match the speed of his
environment. He can act with confidence only as he learns to orient
himself in the new mobile landscape. He needs to be quicker than the
event he intends to master. The origin of the word "speed" has a revealing

meaning. In original form in most languages, speed is intimately con
nected with success. Space and speed are, moreover, in some early forms

of languages, interchangeable in meaning. Orientation, which is the basis

of survival, is guaranteed by the speed of grasping the relationships of
the events with which man is confronted.

Social and psychological motivations

Significantly, the contemporary attempts to represent movement were made

in the countries where the vitality of living was most handicapped by
outworn social conditions. In Italy, technological advances and their eco

nomicasocial consequences, were tied with the relics of past ideas, instal,
Lions. The advocates of change could see no clear, positive direction.
Change as they conceived it meant expansion, imperialist power policy.
The advance guard of the expanding imperialism identified the past with

the monuments of the past, and with the keepers of these monuments;
and they tried to break, with an uninhibited vandalism, everything which

seemed to them to fetter the progress toward their coals. "We want to
free our country from the fetid gangrene of professors, archaeologists,
guides and antique shops," proclaimed the futurist manifesto of 1909.
The violence of imperialist expansion was identified with vitality, with
the flux of life itself. Everything which stood in the way of this desire
of the beast to reach his prey was to be destroyed. Movement, speed,
velocity became their idols. Destructive mechanical implements, the
armoured train, machine gun, a blasting bomb, the aeroplane, the motor
ear, boxing, were adored symbols of the new virility they sought.

In Russia, where the present was also tied to the past and the people
were struggling for the fresh air of action, interest also focused on the
dynamic qualities of experience. The basic motivation of reorientation
toward a kinetic expression there was quite similar to that of the Italian
futurists. It was utter d:sgust with a present held captive by the past.
Russia's painters, writers, like Russia's masses, longed to escape into a
future free from the ties of outworn institutions and habits. Museums.
grammar, authority, were conceived of as enemies; force, moving masses.

moving machines were friends. But this revolt against stagnant traditions.

this savage ridiculing of all outworn forms, opened the way for the
building of a broader world, The old language, which as Mayakovsky said

"was too feeble to catch up with life," was reorganized into kinetic
idioms of revolutionary propaganda. The visual language of the past.
from whose masters Mayakovsky asked with just scorn, "Painters will
you try to capture speedy cavalry with the tiny net of contours?" was
infused with new living blood of motion picture vision.
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Representation of Movement

In their search to find an optical projection which confol !tied to the
dynamic reality as tl-e) sensed and comprehended it. paintels

scions') repeated the path traced by advancing physical science

Their first step was to represent on the same pictureplane .1 sequence of

positions of a MON tng body. This was basically nothing but a cataloging of

stationary spatial locations. The idea corresponded to the concept of

classical physics, which describes objects existing in thieeilimensional

space and changing locations in sequence of absolute time. The concept

of the object was kept. The sequence of events frozen on the picture-

plane only amplified the contradiction between the dynamic reality and the

fixity of the three-dimensional objectconcept.

Their second step was to fuse the different positions of the object by
filling out the pathway of their movement. Objects v-re no longer con-
sidered as isolated, fixed units. Potential and kinetic energies were
included as opt:cal characteristics. The object was 'egarded to be either

III active 'notion, indicating its direction by "Imes h....ce." or in potential

motion, pregna,a with lines of force, which panted the dileciion in which
the object would go if fre,,I. The pairiwrs thus sought to picture the
mechanical point of view of nature, devising optical equiv alents for mass.
force, and gravitation. This innovation signified important progress,
because the indicated lines of forces could function as the plastic forces

of two-dimensional picture plane.

The third step was guided by desire to integrate the increasingly compli-

cated maze of movement-directions. The chaotic jumble of centrifugal
line of forces needed to be unified. Simultaneous represe ation of the
numerous visible aspects composing an event was the new representational

technique L :re Introduced. The cubist space analysis was synchronized

with the line of forces. The body of the moving object, the path of its

movement and its background were portrayed in the same picture by
fusing all these elements in a kinetic pattern. The romantic language of

the futurist manifestos describes the method thus: "The simultaneosity

of soul in a work of art; such is the exciting aim of ow art. In painting
a figure on a balcony, seen from within doors, we shall not confine the

view to what can be seen through the frame of the window; we shall give

the sum total of the visual sensation of the street, the double row of
houses extending right and left the flowered balconies, etc. . , . in other
words, a simultaneity of environment at d therefore a dismemberment

and dislocation of objects, a scattering and confusion of details inde-

pendent of one and another an" wirinut reference to accepted logic," said

Marinelli. Thi concept shows a great similarity to the idea expressed by

Einstein, expounding as a physicist the space time interpretaron of the

general theory of relativity. "The world of events can he described by a
static picture th ./11 onto the background of the four dimensional time-

space continuum. In the past science described motion as happenings in

time, general theory of relativity interprets events existing in space-time."
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"I he closest approximation to representation of 11100011 III the genuine
terms of the pictureplane was achieved by the utilization of color planes

as the organizing factor. lie origin of color is light, and colors on the
picture surface have an intrinsic tendency' to Ilium to their origin. Motion.
therefore, is inherent in t olor Painters intent on realizing the full motion
potentialities of color believed that the image hei mites a form only in the
progressive interrelationships of opposing colors. Adjacent colorsurfaces
exhibit contrast effects. They reinfori y each other in him. %Amato'''. and
intensity.

The greater the intensity of the colorsurfai es achieved by a carefully
organized use of simultaneous and successive contrast. the greater their
spatial movement color in regard to pit tureplane Their advancing,
receding. contracting and circulating movement on the surface creates a
rich variety, circular, spiral, pendular, et( in the process Of moulding
them into one form which is light or. in practical tyrins. grey. -Form
is movement," declared 'Mammy. The classical continuous outline of the
objects was therefore eliminated and a rhythmic discontinuity created by
grouping colors in the greatest possible contrast. The pictuieplane.
divided into a number of contrasting colorsurfaccs of different hue, satu
ration, and intensity, could by perceived only as a form. as a unified
whole III the dynamic sequence of visual perception. The animation of the
image they achieved is based upon the progressive steps in bringingoppos-
ing t olors into balance.

The centrifugal and ientripetal forces of the contrasting color-planes
move forward and backward, up and down, left and right. compelling the

spectator to a kinetic participation as he follows the intrinsic spatial-
direction of colors. The dynamic quality is based upon the genuine
movement of plastic forces in their tendency toward balance. Like a spin.
ning top or the running wheel of a bicycle, which can find its balance
only in movement, the plastic image achieves unity in Innseinent, in pa
petual relations of contrasting 1 olors.

%. 11 Ca..nettlre, Poster
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In these two chapters the elements of calculus are intro-
duced and used to define the concept of speed. This ar-
ticle should be useful preparation for reading Feynman's
article on Newton's Laws of Dynamics in this reader.

9 Speed

W. W. Sawyer

1961

We are going to investigate speed, the speed of a moving object. How
can we see clearly what a moving object is doing? We might make a
"movie" of an object moving along a straight line. Suppose we have
a camera that makes a picture every tenth of a second. Suppose succes-
sive pictures are as shown in Fig. 1. What is the little object doing?
Every tenth of a second, it moves up 1 inch. It seems to be moving with
a steady speed of 10 inches a second.

On another occasion, we might obtain the pictures shown in Fig. 2.
Here, the object advances 2 inches between each picture and the next.
It has a steady speed of 20 inches a second.

Let us look at something with a varying speed. Suppose an object is
accelerating. Between the first and second pictures it might cover 1

INCHES
6

5

4

3

2

1

0

Figure 1
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Figure 2

inch; between the second and third, 2 inches; between the third and
fourth pictures, 3 inches. Its record would be as shown in Fig. 3.

INCHES
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4

3

2

1

0

Figure 3

Already we notice certain things. (I) With steady speeds the dots lie
on a straight line, (2) with accelerated motion, the dots lie on a curve.

QUESTION 1. Figures 1 and 2 both represent objects moving with steady
speeds. How could one tell, by examining these pictures, which object was
moving faster? It Is not necessary to bring numbers into the answer. It is
possible to tell, at a single glance, which object is the faster. How?t

We can also make an object record its own motion. In Fig. 4, the
object moves up and down the line PQ. Paper passes underneath from
right to left at a steady speed; the object is inked so that it leaves a
trail on the paper. If the object has a steady speed, its trail will be a
straight line.

t Answers to problems will be found at the back of the book.
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Figure 4

QUESTION 2. Fit the records shown in Fig. 5 to the descriptions:

(a) Moving up rapidly.
(b) Moving up slowly.
(c) Stationary.
(d) Moving down slowly.
(e) Moving down fast.

CE FaH
(i) (ii) (i i i)

Figure 5

QUESTION 3. Fit the records shown in Fig. 6 to the descriptions:

(f) Starting from rest and gradually gaining speed upwards.
(g) Rising fast at first and gradually slowing down to rest.
(h) Starting from rest and gradually acquiring speed downwards.
(i) Falling fast at first and gradually being brought to rest.

}
(vii) (viii)

Figure 6

No special equipment is needed, if you want to demonstrate the
connection between curves and movement. The simplest thing is to draw
the curve first, and then pass it behind a narrow slit ; the arrangement is
similar to that of Fig. 4. You will only be able to see a small part of
the curve through the slit, and this will give you the imprecsion of a
point rising and falling.

This has an engineering application. If we want to make an object
behave in a particular way, we can do so by means of a suitably shaped
cam.

Speed
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In Fig. 7, for example, the cam moves to the left at a steady pace.
The rod AB remains at rest, until the point C reaches B. It will then
begin to gather speed upward until D reaches B. When in contact with
the straight part DE, the roc: will move upwards with steady speed.
The rod loses speed when in contact with the curve EF. Finally, it again
is at rest when the section FG reaches it.

CAM

Figure 7

Curves like those in Figs. 5, 6, and 7 help us to think about move-
ment. We can see the curves; details appear in the curves that might
not be apparent in the actual movement; the curves give ..; something
definite to look at and think about.

The work we have done also tells us something about the scope of
calculus. Calculus begins as the study of speed. But in thinking about
speed, we have been led to the curves drawn above. These curves could
be described in terms of speed. For example, curve (viii) could be
described as the curve that records the movement when an object
moves upward faster and faster. So calculus can be used not only to
describe movement but also to describe the shapes of curves. Calculus
was in fact so used in its earliest days. Kepler, in 1609-1619, discovered
the paths in which the Earth and planets move around the Sun, and the
way in which their speeds varied as they went round. Isaac Newtor.
in the years 1665-1687, was able to show that this was what the planets
ought to do, if the sun attracted them according to the inverse-square
law. Thus, with the help of calculus, he accounted for both the speeds
and the curves. It impressed men very much that the complicated
behavior of the solar system could be deduced from three or four very
simple assumptionsNewton's laws of motion and his law of gravity.
Newton's laws, and his application of calculus to astronomy, have a
renewed interest today, when not only can we look at the planet Mars
but some of us may be able actually to go there. Calculus would be
used to calculate the possible orbits from the Earth to Mars, and to
decide which orbit would require the least fuel.
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Calculating Velocity

Now let us turn to some simple calculation. How do we work out
the velocity of an object? Suppose, for example, a car is traveling along
a straight road, a turnpike say. At 2 o'clock the mileage recorder shows
70 miles. At 5 o'clock, the mileage is 220 miles. Suppose the car has
been traveling all the time at a steady speed (this is most unlikely in
practice!). How fast has it been going? This is not a difficult question.
Subtracting 70 from 220, we see that the car has gone 150 miles. Sub-
tracting 2 from 5, we see that it has taken 3 hours to do this. We divide
150 by 3 and get 50. So the speed is 50 mph.

Our reason for doing this simple piece of arithmetic is to study the
method, rather than the answer. We want to extract from it a formula
for velocity. We bring some symbols in. Let s miles be the reading of
the mileage recorder at the time t hours. Thus, t = 2 would indicate
that the time was 2 o'clock, and s = 70 would indicate that the car
had gone a total distance of 70 miles. The information we had in the
question above could be put in a table like this:

t 2 5

s 70 220 .

But we want to get away from the particular numbers 2, 5, 70, 220.
We want a formula for giving the velocity between any two times and
any two places. So we bring in some more symbols.

Generalized problem. "At a hours, the mileage is p m:les. At b
hours, the mileage is q miles. The car moves at a steady speed. Find
its velocity, v miles an hour."

We do the same steps as we did in the particular arithmetical prob-
lem, but we replace the particular numbers by the corresponding
symbols. a should appear now, where 2 appeared in the arithmetic;
b replaces 5, p replaces 70, q replaces 220. The table is:

t a b

s p q

In the arithmetic, we began by subtracting 70 from 220. 1n the algebra,
v,, subtract p from q. So the car has gone (q p) miles. How long has
it taken to do this? Instead of subtracting 2 from 5, we subtract a from
b. The car has taken (b a) hours. To find the velocity, we divide the
number of miles gone by the number of hours taken. This gives us

Formula (1) V =9 P.
b a

Speed
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It is most important to remember that this formula holds only if the car
has a steady speedif it moves at a constant velocity.

Suppose, for example, a car driver drove 30 miles in one hour, then
spent 3 hours having dinner, suddenly realized how late it was, drove
for an hour at 95 mph, and then had an accident. It would be no good
for this driver to say, "I have been out for 5 hours and have covered
125 miles. So my speed can only have been 25 mph. The accident was
not my fault." At the moment of the accident, his speedometer was
showing 95 mph. That is what we mean by velocity; what the speed-
ometer shows at a particular instant. It has nothing to do with ancient
history. Maybe this driver had not used his car for a year. Then he
could say that he had only covered 125 miles in a year, which is 0.014
miles an hour. Everyone would call this a ridiculous defense. I only
emphasize this point because many students of calculus behave exactly
like this man. They remember formula (1). It is so simple that they use
it even in situations where it gives the most ridiculous results.

Formula (1) works only when an object travels with constant velocity.
If the velocity varies a little, then formula (1) gives us, not the exact
velocity, but a reasonably close estimate of it. For example, the speed
of a car does not vary much in one second. Formula (1) would give a
reasonable estimate of a car's speed, if one observed the distance the
car went in a second. Such evidence might be available if someone had
been taking a movie when a car crashed, and it would be quite reason-
able to produce that movie in a law court. In calculus, we use something
of the same procedure. We are mainly interested in cases where the
velocity is varying all the time. So we cannot simply quote formula (1).
That would be quite wrong. What we do, is to use formula (1) to
estimate the velocity; by using shorter and shorter times, we try to
arrive at some conclusion.

Negative Velocity

One curious result can be drawn from formula (1) even in the case
of steady velocity. Suppose the car is going backwards. This happens
rarely or never with cars, so our example is somewhat unreal. However,
in science the situation frequently occurs; for example, a stone, thrown
straight up into the air, rises for a certain time, and then falls. When
falling, it is returning to its original position, like a car backing. Suppose
then, a car capable of driving backwards at a steady speed for two or
three hours. How would its table look? Something like this

t 3 5

s 80 60
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Speed

At 3 o'clock, it would be 80 miles from home; at 5 o'clock, only 60
miles. In 2 hours, it has returned 20 miles; evidently, it has peen backing
at 10 mph.

What does formula (1) give? We have to put

a = 3, b = 5, p = 80, q = 60.

This gives

q_77 p 60 80 20v = 10.
b a 5 3 2

We know the car is backing at 10 mph. The formula gives v = 10.
There are two ways of dealing with this situation.

(1) We might say, "It is absurd to have negative velocities. A
velocity cannot be less than zero. If a car is going backwards, you
must use a different formula. Formula (1) just does not apply then."

(2) We might say, "We will use formula (1) always when some-
thing moves with a steady speed. If formula (1) gives us a negative
answer, we shall know that the object is moving backwards."
Policy (2) has been found to be much the most convenient. If we

used policy (1), it would double our work; we should have one set of
rules for things that are rising, another set for things that are falling.
Policy (2) allows us to have a single formula. If, at the end, the answer
comes out negative, we know what that means. Usually, in a car, the
speedometer shows only speeds forward. What we are doing now is
rather more like what happens on a ship, where you have "full speed
ahead" and "full speed astern." One could imagine a car with an ex-
tended speedometer, that went past zero to show " -5 mph" when the
car was backing at 5 mph, " 10 mph" when it was backing at 10
mph, and so on.

In physics, the word velocity is commonly IL-A when direction is
being taken into account; speed is used when you are simply concerned
with how fast an object is moving, and not bothering whether it is

moving forwards or backwards. Thus a car advancing at 10 mph has
a velocity of +10 mph; when backing at 10 mph, it has a velocity of
10 mph. In both these cases, the speed is 10 mph. This distinction
will not play any part in this book. We shall always be concerned with
velocity. For example, we might record various movements as in Fig. 8.

-I-100mph + !Omph 0 mph -10 mph -100 mph

Figure 8
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Rates of Change

If we are traveling in a car, the velocity of the car is the rate at which
the mileage increases Velocity is the rate or change of distance gone.
Calculus is concerned with how fast things change. The thing changing
need not be a distance. We may ask, "How fast is that man growing
rich?" "How fast is this car's tank being filled with gas?" These are
rates of changethe rate of change of a bank account; the rate of
change of the amount of gas in the tank.

It is convenient to have a symbol fo- "the rate of change of." We
shall use a very simple one, the symbol

If f measures any quantity, f' measures the rate at which that quantity
is growing (f'' is read "f prime" or "f dashed").

For example, if a boy is h inches in height when he is n years old, h'
means the rate at which he is growing, in inches a year.

If a cal goes s miles in t hours, s' means the rate, in mph, at which
the mileage grows. s' miles an hour is in fact the velocity of the car.

If there are g gallons of gas in a tank after t seconds of filling, g'
means the rate at which gas is entering the tank, measured in gallons
a second.

If a man has ;n dollars when he is n years old, in' is the rate at which
his wealth is increasing, in dollars a year.

Note here the distinction we made earlier: tn' is not the same as min.
If a man has $3000 when he is 30 years old, it does not in the least
follow that his wealth is increasing at the rate of $100 a year. You
could only draw this conclusion if you knew that, from the time he was
born, he had been saving money at a steady rate. It might be that he
had nothing at all until he was 27, and in the last three years he has
been saving steadily at $1000 a year. In that case, m' would be 1000.
On the other hand, it may be that he is having a difficult time now,
and is L.:ttvilly losing money at $500 a year. In that case = 500.
m' has nothing to do with ancient history. It measures what is happen-
ing now.

If s miles is the distance a car has gone in t hours, s' denotes the
velocity of the Lar in miles an hour. Again, you cannot assume that
s' = sit. If I tell you that I have been driving for 3 hours and have
covered 90 miles, you cannot work out from this how fast I am moving
at this moment. You can only see what s' is by looking at the speedome-
ter. I may be traveling at sixty. In this case, s = 90, t = 3, s' = 60.
Or my car may be at rest. In that case s = 90, t = 3, s' = 0. I may



even be backing at 10 miles an hour. Then s = 90, t = 3, s' 10
All this merely amounts to saying that, if I tell you what time it is

and where I am, you cannot tell me how fast I am moving. However it
is necessary to emphasize this. Students seem to have had drilled into
them "velocity is distance divided by time." This is so only in the case
of steady velocity. But the whole point of calculus is to study variable
velocity, as when a ball is falling to the earth or a rocket taking off
from the earth.

s' then is the number to which the speedometer is pointing at any
particular moment.

EXAMPLES. Translate into calculus symbolism:
(1) After 1 had been traveling for 5 hours, I had covered 120 miles and was

driving at 40 mph.

ANSWER. For t = 5, s = 120 and s' = 40.

(2) After 2 hours' driving, my speedometer showed 50 mph and after 3 hours
it showed 45 mph.

ANSWER. For t = 2, s' = 50. For t = 3, s' = 45.

(3) For the first two hours, 1 drove at a steady speed of 40 mph.

ANSWER. s' = 40 for every value of t from 0 to 2.

Finding Velocity in Simple Cases

There are some cases in which velocity can be found by arithmetic
alone. These cases are, of course, not very interesting or exciting; the
interesting results come in the problems where new methods are
needed. These simple cases, however, can get us used to the s' symbolism.

Suppose the mileage on my car is zero, and I drive at a steady velocity
of 10 mph for a certain time. The table giving my mileage at any time is

t 0 1 2 3 4

s 0 10 20 30 40 .

Here, s = 10t is the law What is s'? We said at the outset that my
velocity was steady at 10 mph, and s' measures my velocity. So s' = 10.
Let us set this out formally.

Result A. If

s = 10t,

s' = 10.

Speed
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Since my velocity is 10 mph all the time, s' = 10 does not simply
mean that s' is 10 at some particular instant, but that at any instant
during the motion s' has the value 10. s = 101 is a law for the motion
in the sense that it tells you where the car is at any time. If you ask,
"Where is the car after 1k hours?" I substitute t = 11 in the formula
s = 10t and get s = 15. s' = 10 is also a law, in the sense that it tells
me the velocity at any time; it says that the velocity is always 10.

Here we have an example of one of the first problems of calculus:
given a law that tells you where an object is at any time, find a law for
its velocity at any time.

Exercises

1. To begin with, the mileage of my car is zero. I drive at a steady velocity of
20 mph. What law gives my position at any time? What is my velocity at
any time? Write the answers to both questions as equations.

2. The position of a car at any time is given by the equation s = 30t. What is
the mileage when t = 0? when t = 1? when t = 2? when t = 3? What
is the velocity of the car? What equation gives s'?

3. The position of a car at any time is given by the equation s = 401. Find
the equation for the velocity of the car.

4. Complete the statement, "if s = 50t, s' = ...".
5. If k stands for any fixed number (like 20, 30, 40, 50 in the preceding

examples) and s = kt, then s' r ... ?

In the examples just considered, we ctarted each time with zero
mileage. This however is not necessary. Consider the law s = 10t + 3.
The table for this is

t 0 1 2 3 4

s 3 13 23 33 43

Here, the mileage recorder showed 3 at the beginning. The table shows
that the car covers 10 miles with every hour that passes. The velocity
is 10 mph, and so s' = 10. We thus have

Result B. If
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Velocity at an Inaant

Steady velocity is too simple to be very exciting. We now turn to
the real problem, the question of variable velocity.

It should be emphasized that the quantity v or s', for which we
are seeking, is intended to measure velocity at an instant. In everyday
life we find this quite simple; we glance at the speedometer of a car;
the needle points to 60 mph and we conclude that 60 mph is our speed
at this instant. But when we start to examine what this means, we meet
a certain paradox. The very idea of velocity seems to involve tiro times,
the beginning and end of an interval. We measure velocity in miles
an hour, and these words imply that we see how far an object goes in
a certain time. If the time allowed is zero, the distance the object goes
is zero. However fast it may be going, two photographs of it taken at
the same time will show it at the same place.

If in formula (1) we were to try to discover the velocity at an instant,
by making a and b coincide, then p and q also would coincide, and the
formula would give us 0 + 0 as the velocitywhich does not help us
at all.

We have used curves to record the movement of objects. A steep
line corresponds to an object, moving fast; a gentle slope to an object
moving slowly (Figs. 5 and 6). So our question could be posed in terms
of curves. Instead of saying, "What is the velocity at this instant?" we
could ask, "What is the steepness of the curve at the point P?" (see
Fig. 9). This seems a sensible sort of question. We would agree, for

Speed
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Figure 9 Figure 10

example. that, for the curve shown in Fig. 10, the steepness at the
point R is greater than at the point Q. We know what we mean when
we say this. But suppose the curve were covered up in such a way that
we could only see the point Q itself (Fig. 11). We should have no idea
how steep the curve was at Q. Suppose the screens are moved a little
apart, so that we see just a little bit of the curve near Q (Fig. 12).

Figure 11 Figure 12

Now we can see what the steepness is at Q; it does not matter how
little of the curve is exposed, so long as we can see a piece of curve on
each side of Q.

Accelerated Motion

Let us now take a particular case of motion with variable velocity,
and see how the velocity at any instant can be calculated. This example
that we are going to study is in fact of importance in physics; it is
the type of motion usually studied at the beginning of a course in
mechanics. It could be produced by the apparatus shown in Fig. 13

Figure 13

If the wagon weighed 15 ounces, the weight would have to be somewhat
more than 1 ounce. "Somewhat more" because there would be friction
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acting at the wheels of the wagon; by adjusting the weight, the desired
motion could be obtained, namely, that given by the table

t 0 1 2 3 4

s 0 1 4 9 16 .

It is understood that s feet is the distance gone by the wagon in r

seconds. The table of course fits the law

s = t2.

You will notice that the table above agrees with my statement that
we have accelerated motion. In the first second. between t = 0 and
t = 1, the wagon advances 1 foot only. But between t = 1 and t = 2,
the wagon advances 3 feet. Between t = 2 and t = 3, the wagon
advances 5 feet (for 5 = 9 4). Between t = 3 and t = 4, the wagon
advances 7 feet (7 = 16 9). These numbers are consistent with the
belief that the wagon is accelerating, is going faster and faster, as the
weight pulls it forward.

Suppose now we try to estimate the velocity at the instant when
t = 3. In the second before this instant, from t = 2 to t = 3, the wagon
covers 5 feet. In the second after this instant, from t = 3 to t = 4, the
wagon covers 7 feet. It seems reasonable to guess that the velocity at
the instant t = 3 lies between 5 and 7 feet a second.

Students nearly always ask, "Couldn't we take the average of 5 and
7, and say that the velocity is 6 feet a second?" Unfortunately, this
answer is correct for this particular example. I say, "Unfortunately,"
because, as a rule, taking the average does not give the correct velocity.
In fact it hardly ever gives the correct velocity. Only when the law is
of the type

s = at2 + bt + c

does taking the average work. We shall see below that averaging gives
a wrong result for the law s = t3.

If you will take my word for this, for the time being, we shall set
aside the guess that the true velocity is exactly halfway between our
estimates 5 and 7, and merely use our conclusion that the velocity lies
somewhere between 5 and 7.

How can we narrow down this margin? We agreed earlier that the
shorter the time interval was, the better estimate one should get for
the velocity. It seems a good idea to take a shorter interval. Instead of
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one second before and after t = 3, we try half a second before and
after. By substitunn- in the formula s = t2, we obtain the little table

t 2} 3 3}

s 64 9 121 .

What use has the wagon made of these half seconds" In the half second
between t = 2+ and t = 3, s has grown from 61 to 9. That is, the
wagon has covered 2 feet. Two and three-quarters feet in i second
suggests a velocity of 2i + I, which equals 5} feet a second.

In the half second after t = 3, the wagon covers 121 9, that is,
31 feet. Three and one-quarter feet in + second suggests the velocity
31 ÷ 1, that is, 6} feet a second.

So we now think the velocity should lie between 5+ and 61 feet a
second.

But why stop at a half? Why not go to shorter and shorter intervals,
getting better and better estimates?

If we take one-tenth of a second before and after t = 3, we get the
little table

t 2.9 3 3.1

s 8.41 9 9.61

by means of the formula s = t2. In the tenth of a second before t = 3,
the wagon advances 0.59 feet; this suggests a velocity of 0.59 ÷ 0.1 =
5.9 feet a second. In the tenth of a second after t = 3, the wagon
advances 0.61 feet, which suggests a velocity of 0.61 ÷ 0.1 = 6.1 feet
a second. We now think the velocity should lie between 5.9 and 6.1
feet a second.

By exactly the same method, if we take one-hundredth of a second
before and after t = 3, we are led to believe that the velocity lies between
5.99 and 6.01 feet a seconc. By taking one-thousandth of a second, we
are led to believe the velocity is between 5.999 and 6.001 feet a second.

We collect these results in the form of a table:

By considering intervals of We are led to believe that v, the
velocity in feet per second, lies between

1 second 5 and 7
0.1 second 5.9 and 6.1
0.01 second 5.99 and 6.01
0.001 second 5.999 and 6.001



Our last estimate here, using 0.001 second, pins r down to a very
narrow region, since 5.999 and 6.001 differ by only 0.002. But of course
there is no need to stop at an interval of 0 001 second. We could use a
millionth or a billionth of a second, and get even more accurate esti-
mates of v. In fact, there seems to be no limit to how accurately we can
estimate v. For the table above shows a very marked pattern. 1 should
imagine you can guess how the table would continue.

Exercise

Without making any calculations, guess the estimates of 1, that would
correspond to intervals of 0.0001 second and 0.00001 second. Check your
guesses by actual calculation.

I imagine you had no difficulty in seeing how the table would con-
tinue. Each row we go (Jowl, we find one more 9 in 5.99 ... 9 and one
more zero in 6.00 ... 01 The estimates are coming closer and closer
together. Any particular estimate leaves some uncertainty about the
value of v, even though this uncertainty may be very small. But if we
take all the estimates into account, this uncertainty disappears. There
is only one number that is bigger than 5.999 ... 9, however many nines
are written, and smaller than 6.000 ... 01, however many zeros are
written. That number is 6.

So, although we spoke of zl,timating the velocity, and an estimate
usually implies some degree )f error or uncertainty, yet there is no
uncertainty at all in our final answer. 6 is the only number that satisfies
all the estimates, as they close in from the right and the left.

All this arithmetic thus leads us to the conclusion that, if a body
moves according to the law s = t2, when t = 3 its velocity is given
by v = 6.

The purpose of this explanation is that you should now be able to
work out for yourself the values of v corresponding to t = 1, t = 2,
t = 4, and t = 5. When you look at your answers you should notice
a certain law.

I must make sure that you understand the method for finding v
corresponding to any given value of t. In classes, some students see
the point of the method straight away; but there are always some who
have to have it explained more than once. So, for readers who need it,
I will indicate how to get clear about the method. It is important that
you should understand this method, for the next stage of the work
requires you to discover the first result of calculus; you will feel much
happier and more confident if you discover it for yourself, than if I
have to tell you.
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First of all, you must be clear as to the idea behind the method.
Formula (1), which is often spoken in the form "velocity is distance
divided by time," applies only to constant velocities. When the velocity
is varying, distance divided by time gives the average velocity only; the
actual velocity at any instant may be more or less than the average
velocity. However, we consider shorter and shorter intervals of time;
we hope that this gives less and less opportunity for the velocity to
vary, so that the average velocity, over a very short interval, should be
a good estimate of the true velocity.

Second, you need to be able to carry through the actual calculation.
If you find difficulty in organizing the work, you may find it helpful
to adapt the argument of pages 24-25; go through the same kind of
steps, 'out work out the velocity for t = 2 instead of t = 3. Then go
through the steps again, but this time find v for t = 4. Of course, do
not be content just to go through the arithmetic. Think all the time
what you are doing and why that should be done.

When you have worked out v corresponding to t = 1, t = 2, t = 4
and t = 5, complete the following table:

t 1 2 3 4 5

v 6

After completing the table, you should notice a law connecting v
and t. The law is v =

It is best if you do not read further until you have successfully com-
pleted this work.

The Law for the Velocity

If you carry through the arithmetic correctly, you should arrive at
the following result:

t 1 2 3 4 5

v 2 4 6 8 10 .

Each number in the second row is exactly twice the number above it.
So the law is v = 2t. If we use the sign ' introduced on page 18, we
may use s' instead of v. We then have a new result to put beside our
results A and B on pages 19, 20.

Result C. If
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task of tinding the square of 2.99. This work can be simplified by
algebra. There is a standard result of algebra

Formula (2) (a + b)2 = a2 + 2ab + b2.

If we put a = 3, b = 0,01, w,.-. get a + b = 2.99. So formula (2)
gives us

(2.99)2 = 32 + 2. 3 (-0.01) + (0.01)2
= 9 0,06 + 0.0001
= 8.9401.

This method involves less work, and is less likely to lead to a mistake
than the usual method of elementary arithmetic.

However, we can make greater use of algebra than simply to shorten
the calculations. On page 25, we observed a column containing the
numbers 5; 5.9; 5.99; 5.999; and we made a guess as to how this
column would continue. By using algebraic symbols, we can avoid this
guess. Instead of considering, one at a time, the intervals

between 3 and 3 + 0.1;
between 3 and 3 0.1;
between 3 and 3 + 0.01;
between 3 and 3 0.01; etc.,

we can notice that all these intervals are particular cases of the interval

between 3 and 3 + h.

The particular cases can be got by substituting 0.1; 0.1; 0.01;
0.01 ; respectively for h. Since we can equally well substitute 0.0000001

or 0.000000001 for It, we are thus enabled to deal with the intervals of
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Ordnance map. The rate of motion, or velocity, is then a con-
tinuous quantity which can be exactly specified, as we
specify other continuous quantities, but which can be only
approximately described by means of numbers.

§4. Variable Motion

Let us now suppose that the motion is not uniform, and
inquire what is meant in that case by the rate at which a
body moves.

A train, for example, starts from a station and in the
course of a few minutes gets up to a speed of 30 miles an
hour. It began by being at rest, and it ends by having this
large velocity. What has happened to it in the meantime?
We can understand already in a rough sort of way what is
meant by saying that at a certain time between the two
moments the train must have been going at 15 miles an
hour, or at any other intermediate rate; but let us endeavour
to make this conception a little more exact. Suppose, then,
that a second train, which is indefinitely long, is moving in
the same direction at a uniform rate of 15 miles an hour on a
pair of rails parallel to that on which the first train moves;
thus, when our first train is at rest the second one will appear
to move past it at the rate of 15 miles an hour. When the
first train starts an observer seated in it will see the seem,'



one-millionth or one-billionth, or any other number for that matter,
all at one blow, by an algebraic calculation.

We now carry this idea into practice. We want to find the velocity
at 1 = 3. So we consider a short interval, from t = 3 to / = 3 + h.
We must find where the object is at these times. The position is deter-
mined by the formula s = 12. When / = 3, s = 9. When I = 3 + h,
s= (3 + h)2 = 9 + 6/1 + //2. So we have the table

t 3 3 + h
s 9 9 + 6/1 + 112

We now use "distance divided by time" to estimate the velocity. How
far has the object gone during this interval of time? We take the
difference between the numbers in the row giving s. The object has gone
6h + /i2 feet during the interval. How long is the interval of time? We
take the difference between the numbers for t. The interval is of length
h seconds. Division gives us our estimate of v, namely,

6h -F /12
h

The expression can be simplified. Since

611 + h2 = h (6 + 11),

on dividing both sides by h we have

6h + h2 = 6 + h.
h

Exercise

In the above expression substitute in turn, the values 1; 0.1; 0.01; 1;
0.1; 0.01 for Ii, and check that the results agree with numbers in the
table on page 25, the positive values of h giving one column and the negative
values of h the other.

When h is positive, we are considering a little interval just after / = 3.
Our estimate of v is then 6 + h, just a little more than 6.

When h is negative, we are considering a little interval just before
/ = 3. Our estimate of v is then just a little less than 6. (For example,
if h = 0.01, the estimate 6 + h is 6 + (-0.01), that is 5.99, just less
than 6.)
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The shorter we make the interval, the closer our estimate conies to 6.
We are thus led to the conclusion that v = 6.

We have just found, by algebra, the velocity corresponding to 1 = 3.
Now there is nothing special about the number 3. The work would
have been just as easy for any other number. Here again is the sort of
situation where algebra can help; we can use a symbol for "any number"
and find v corresponding to any value of t.

Suppose then, we try to find the velocity when t = a, where a stands
for "any number." The work will follow exactly the same plan as it
did for t = 3. We can go through this work, step by step, but writing
a wherever 3 came before.

Exercise

Do this, if you can, before reading it below.

* * *

We shall have the table

t a a + h
s a2 a2 + 2ah + h2 .

Distance gone during the interval is found from the difference between
the two numbers in the row for s; the distance is 2ah + h2 feet. The
time taken is found from the difference between the numbers in the
row for t. The time taken is h seconds. Division gives the estimate

for v, and this simplifies to

2ah + h2
h

2a + h.

Now h is a very small number; it represents the length in seconds
of the interval during which we observe the motion; the shorter this
interval, the better the estimate of v. As h gets smaller and smaller,
2a + h approaches 2a. We conclude

v = 2a.

Thus, if t = a, v = 2a. In words, "If t is any number, v is twice that
number." This confirms the guess we made on page 27. But there our
evidence was limited to the numbers 1, 2, 3, 4, 5. By using algebra, we
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see that v = 21 holds for evoy value of 1. Of course a need not be a
whole number; the laws of algebra hold equally well for fractions and
irrational numbers.

You may wonder why we bother to bring the number a into the
discussion. Why write t = a, v = 2a instead of just v = 21? The reason
is that, at the beginnir.6 of our work we had to consider an interval of
Ii seconds, from t = a to t = a + It. If we had tried to do without
a, we migh, have found ourselves talking about the interval from t = t
to t = t It, which sound somewhat pecu:iar!

A Useful Symbolism

In discussing motion, we continually L e phrases such as "where the
body is at a certain time," or the correspond algebraic phrase,
"the value of s corresponding to a particular value of t." Seeing this
phrase is used so often, it is convenient to have an abbreviation for it.
We shall use s(a) to stand for "the value of s corresponding to t = a."
Thus, in the table

t 0 1 2 3

s 0 1 4 9

9 is the value of s corresponding to t = 3; we can save a lot of space
by expressing this in the abbreviated form s(3) = 9. For the same
table, s(0) = 0, s(1) = 1, s(2) = 4.

When we are discussing velocities, we consider the interval of time
from t = a to t = a + h. We then examine where the object is at the
beginning and end of this interval. Its position is specified by the value
of s. The value of s corresponding to t = a can now be indicated by
s(a), and the value of s corresponding to t = a + It by s(a

Thus, in this interval, the object covers a distance of s(a It) s(a)
feet. The time taken is (a + a = It seconds. Thus the average
velocity during the interval is

Formula (3)

feet per second.

s(a It) s(a)

Procedure for Determining Velocity

We are now able to describe the steps by which we found the law,
for velocity in our work above. The purpose of describing the procedure
is, of course, so that we can apply it to other laws besides s = t2.

p

t
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(1) We began with a law giving s in terms of t.
(2) We then considered the average velocity during the inter\ al

between t = a and t = a + 11. This led us to the expression given in
formt'la (3) above, namely,

s(a + II) s(a)
11

(3) We allowed li to become smaller and smaller. Thus h approached
the value zero. We then found that

s(a + II) s(a)
II

approached a certain value.
(4) That value we regarded as giving the velocity at the instant t = a.
In our symbolism, this result would be written v(a) or s'(a), for it

gives the value of v or s' at t = a.
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Motion

William Kingdon Clifford

1879

§1. On the Various Kinds of Motion

WHILE the chapters on Space and Position considered the
sizes, the shapes, and the distances of things, the present,
chapter on Motion will treat of the changes in thew. sizes,
shapes, and distances, whi-h take place from time to time.

The difference between the ordinary meaning attp cited to
the word "change" in everyday life and the meaning it has
in the r xact sciences is perhaps better illustrated 1.sy the sub-
ject of this chapter than by any other that we have yet
studied. We attained exactness in the description of quantity
and position by substituting the method of representing
them by straight lines otawn on paper for the method of
representing them by means of numbers; though this, at
first sight, might easily seem to be a step backwards rather
than a step forwards, since it is more like a child's sign of
opening its arms to show that its stick is so long, than a
process of scientific calculation.

It is, however, by no means an easy thing to give an ac-
curate description of motion, even although it is itself as
common and familiar a conception as quantity or position.

Let us take r simple case. Suppose that a man, on a rail-
way journey, is sitting at one end of a compartment with
his face towards the engine; and that, while the train is
going along, he gets up and goes to the other end of the
compartment and sits down with his back to the engine.
For ordinary purposes this description is amply sufficient,
but it is very far indeed from being an exact description of
the motion of the man during that time. In the first place,
the train was moving, and it is necessary to state in what
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direction, and how fast it was going at every instant during
the interval considered. Next, we must describe the motion
of the man relatively to the train; and, for this purpose, we
must neglect the motion of the train and consider how the
man would have moved if the train had been at rest. First
of all, he changes his position from one corner of the com-
partment to the opposite corner; next, in doing this he turns
round; and, lastly, as he is walking along or rising up or
sitting down, the size and shape of many of his muscles are
altered. We should thus have to say, first, exactly how fast
and in what direction he was moving at every instant, as
we had to do in the case of the train; then, how quickly he
was turning round; and, lastly, what changes of size or shape
were taking place in his muscles, and how fast they were
occurring.

It may be urged that this would be a very troublesome
operation, and that nobody wants to describe the motion
of the man so exactly. This is quite true; the case which
has been taken for illustration is not one which it is neces-
sary to describe exactly, but we can easily find another case
which is very analogous to this, and which it is most impor-
tant to describe exactly. The earth moves round the sun
once in every year; it is also rotating on its own axis once
every day; the floating parts of itthe ocean and the air
are constantly undergoing changes of shape and statewhich
we can observe and which it is of the utmost importance
that we should be able to predict and calculate; even the
solid nucleus of the earth is constantly subject to slight
changes in size and shape, which, however, are not large
enough to admit of accurate observation. Here, then, is a
problem whose complexity is quite as great as that of the
former, and whose solution is of pressing practical impor-
tance.

The method which is adopted for attacking this problem
of the accurate description of motion is to begin with the
simplest cases. By the simplest cases we mean those in
which certain complicating circumstances do not arise. We

80

t



may first of all restrict ourselves to the study of the motions
of those bodies in which there is no change of size or shape.
A body which preserves its size and shape unaltered during
the interval of time considered is called a rigid body. The
word "rigid" is here used in a technical sense belonging to
the science of dynamic, and does not mean, as in ordinary
language, a body which resists alteration of size and shape,
but merely a body which, during a certain time, happens
not to be altered in +hose respects. Then, as the first and
simplest case, we should study that motion of a rigid body
in which there is no turr.ing round, and in which therefore
every line in the body keeps the same direction (though of
course not the same position) throughout the motion. We
state this by saying that every line "rigidly connected"
with the body remains parallel to itself. Such a motion is
called a motion of translation, or simply a translation; and so
the first and simplest case we have to study is the transla-
tion of rigid bodies. After that we must proceed to consider
their turning round, or rotation; and then we have to de-
scribe the changes of size or shape which bodies may under-
go, these last changes being called strains. The study of
motion therefore requires the further study of translations,
of rotations, and of strains, and further, the art of combin-
ing these together. When we have studied all this we shall
be able to describe motions exactly; and then, but not till
then, will it be possible to state the exact circumstances
under which motions of a given kind occur., The exact cir-
cumstances under which motions of a given kind occur we
call a law of nature.

§2. Translation and the Curve of Positions

Let us talk, to begin with, of the translation of a rigid
body.

Suppose a table to be taken from the top to the bottom of
a house in such a mariner that the surface of it is always kept
horizontal, arid that its length is made always to point due
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north and south; it may be taken down a staircase of any
form, but it is not to be turned round or tilted up. The
table will then undergo a translation. If we now consider
a particular corner of the table, or the end of one of its legs,
or any other point, this point will have described a certain
curve in a certain manner; that is to say, at every point of
this curve it will have been going at a certain definite rate.
Now the important property of a motion of translation,
which makes it more easy to deal with than any other mo-
tion, is that for all points of the body this curve is the same
in size and shape and mode of description. That this is so
in the case of the table is at once seen from the fact that the
table is never turned round nor tilted up during the motion,
so that the different points of it must at any instant be
moving in the same direction and at the same rate. In order
therefore to describe this motion of the table it will be suf-
ficient to describe the motion of any point of it, say the end
of one of its legs. And so, in general, the problem of describ-
ing the motion of translation of any rigid body is reduced
to the problem of describing the motion of a point along a
curve.

Now this is a very much easier task than our original prob-
lem of describing the motion of the earth or the motion of
the man in the train; but we shall see that, by properly study-
ing this, it will be easy to build up out of it other more
complicated cases. Still, even in this form our problem is
not quite simple enough to be directly attacked. What we
have to do, it must be remembered, is to state exactly where
a certain point was, and how fast it was going at every in-
stant of time during a certain interval. This would require
us first t,,,, describe exactly the shape of the curve along
which the point moved; next, to say now far it had travelled
along the curve from the beginning up to any given instant;
and lastly, how fast it was going at that instant. To deal
with this problem we must first take the very simplest case
of it, that, namely, in which the point moves along a straight
line, and leave for the present out of account any descrip-
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tion of the rate of motion of the point; so that we have only
to say where the point was on a certain straight line at every
instant of time within a given interval.

But we have already considered what is the best way of
describing the position of a point upon a straight line. It is
described by means of the step which is required to carry it
to that position from a certain standard place, viz. a step
from that place so far to the right or to the left. To specify
the length of the step, if we are to describe it exactly, we
must not make use of any words or numbers, but must draw
a line which will represent the length corresponding to every
instant of time within a certain interval, so that we may
always be able to answer the question, Where was the point
at this particular instant? But a question, in order to be
exactly answered, must first be exactly asked; and to do
this it is necessary that the instant of time about which the
question is asked should be accurately specified.

Now time, like length, is a continuous quantity which
cannot in general be described by words or numbers, but
can be by the drawing of a line which shall represent it to a
certain scale. Suppose, then, that the interval of time during
which the motion of a point has to be described is the in-
terval from twelve o'clock to one o'clock. We must mark on
a straight line a point to represent twelve o'clock and an-
other point to represent one o'clock; the-, every instant be-
tween twelve o'clock and one o'clock wii' be represented by
a point which divides the distance between these two
marked points in the same ratio in which that instant
divides the interval between twelve o'clock and one o'clocl .
Then for every one of these points it is necessary to assign a
certain length, representing (to some definite scale) the dis-
tance which the point has travelled up to that instant; and
the question arises, In what way shall we mark down these
lengths?

Let us first of all observe the difficulty of answering this
question. If we could be content with an approximate solu-
tion instead of an exact one, we might make a table and put
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down in inches and ,_:ecimals of an inch the distances trav-
elled, making an entry for every minute, or even perhaps
for every second during the hour. Such tables are in fact
constructed and published in the "Nautical Almanac" for
the positions of the moon and of the planets. The labour of
making this table will evidently depend upon its degree of
minuteness; it will of course take sixty times as long to make
a table showing the position of the point at every second as
to make one showing the position at every minute, because
there will be sixty times as many values to calculate. But
the problem of describing exactly the motion of the point
requires us to make a table showing the position of the point
at every instant; that is, a table in which are entered an
infinite number of values. These values moreover are to be
shown, not in inches and decimals of an inch, but by lengths
drawn upon paper. Yet we shall find that this pictorial
mode of constructing the table is in most cases very much
easier than the other. We have only to decide where we
shall put the straight lines which represent the distances
that the point has travelled at different instants.

il)

i

a :in b

Flo. 113

Let ab (Fig. 113) be the length which represents the interval
of time from twelve o'clock to one o'clock, and let m be the
point representing iny intermediate instant. Then if we draw
at m a line perpenuleular to ab whose length shall represent
(to any scale that we may choose) the distance that the
point, has up to this instant travelled, then p, the extremity
of this line, will correspond to an entry in our table. But if
such lines be drawn perpendicular to ab from every point in
it, all the points p, which are the several extremities of these
lines, will lie upon some curve; and this curve will represent

84



an infinite number of entries in our table. For, when once
the curve is drawn, if a question is asked: What was the
position of the point at any instant between twelve o'clock
and one o'clock? (this instant being specified in the right
way by marking a point between a and b which divides that
line in the same ratio as the given instant divides the hour),
then the answer to this question is obtained simply by draw-
ing a line through the marked point perpendicular to ab,
until it meets the curve; and the length of that line will
represent, to the scale previously agreed upon, the distance
travelled by the point.

Such a curve is called the curve of positions for a given
motion of the point; and we arrive at this result, that the
proper way of specifying exactly a translation along a
straight line is to draw the curve of positions.

We have now learned to specify, by means of a curve, the
positions of a body which has motion of translation along a
straight line; and we have not only represented an infinite
number of positions instead of a finite number, which is all
a numerical table would admit, but have also represented
each position with absolute exactness instead of approxi-
mately. It is important to notice that in this and in all
similar cas Is the exactness is ideal and not practical; it is
exactness of conception and not of actual measurement. For
though it is not possible to measure a given length and to
state that measure ary more accurately by drawing a line
than it is by writing it down in inches and decimals of
inch, yet the representation by means of a line enables us
to reason upon it with an exactness which would be impossi-
ble if we were restricted to numerical measurement.

§3. Uniform Motion

Hitherto we have supposed our point to be moving along
a straight line, but were it to move along a curve the con-
struction given for the curs e of positions would still hold
good, only the distance trP versed at any instant must now
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be measured from some standard position along the curve.
Hence any motion of a point, or any motion of translation
whatever, can be specified by a properly drawn curve of
positions, and the problem of comparing and classifying dif-
ferent motions is therefore reduced to the problem of com-
paring and classifying curves. Here again it is advisable and
even necessary to begin with a simple case. Let us take the
case of uniform motion, in which the body passes over equal
distances in equal times; and then, as we may easily see,
the curve of positions is a straight line. Uniform motion
may also be described as that in which a body always goes
at the same rate, and not quicker at one time and slower at
another. It is obvious that in this case any two equal dis-
tances would require equal times for traversing them, so that
the two descriptions of uniform motion are equivalent.

It was shown by Archimedes (the proof is an easy one,
depending upon the definition of the fourth proportional)
that whenever equal distances are traversed in equal times,
different distances will be traversed in times proportional
to them. Assuming this proposition, it becomes clear that
the curve of positions must be a straight line, for a straight
line is the only curve which has the property that the height
of every point of it is proportional to its horizontal distance
from a fixed straight line.

We may also see in the following manner the connection
between the straight line and uniform motion.

Suppose we walk up a hill so as always to get over a hori-
zontal distance of four miles in an hour. The rate at which
we go up will cleariy depend on the steepness of the hill; and
if the hill is a plane, i.e. is of the same steepness all the way
up, then our rate of ascent will be Cho, same at every instant,
or our upward motion will be uniform. If the hill be four
miles long and one mile high, then, since the four miles of
horizontal distance will be traversed in an hour, the one mile
of vertical distance will !also be traversed in an hour, and we
shall be gaining height at the uniform rate of one mile an
hour. If the hill were two miles high, or, as we say twice as
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steep, then we should have been gaining height at the rate
of two miles an hour. But now if we suppose a hill of varying
steepness, so that the outline of it seen from one side is a
curve, then it is clear that the rate at which we go up will
depend upon the part of the hill where we are, assuming
that the rate at which we go forward horizontally remains
always the same. This "elevation" of the hill may be taken
as the curve of positions for our vertical motion; for the
horizontal distance that we have gone over, being always
proportional to the time, may be taken to represent the time,
and then the curve will have been constructed according to
our rule, viz. a horizontal distance will have been taken pro-
portional to the time elapsed, and from the end of this line
a perpendicular will have been raised indicating the height
which we have risen in that time. Uniform motion then has
for its curve of positions a straight line, and the rate of the
motion depends on the steepness of the line. Variable mo-
tion, on the other hand, has a curved line for its curve of
positions, and the rate of motion depends upon its varying
steepness.

In the case of uniform motion it is very easy indeed to
understand what we mean by the rate of the motion. Thus,
if a man walks uniformly six miles an hour, we know that
he walks a mile in ten minutes, and the tenth part of a mile
in one minute, and so on in proportion. It may not, how-
ever, be possible to specify this rate by means of numbers;
that is to say, the man may not walk any definite number
of miles in the hour, and the exact distance that he walks
may not be capable of representation in terms of miles and
fractions of a mile. In that case we shall have to represent
the velocity or rate at which the man walks in much the
same way as we have re} 7esented other continuous qs_anti-
ties. We must dray.' to scale upon paper a line representing
the length that he hr. ; walked in an hour, or a minute, or
any other ir terval of time that we decide to select; thus, for
example, a uniform rate of walking might be specified by
marking points corresponding to particular hours upon an

87



gaining nor losing, but will be going at the same rate; at
that particular instant, therefore, we must say that the first
train is going at the rate of 15 miles an hour. And it is at
that instant only, for the equality of the rates does not last
for any fraction of a second, however small; the very instant
that the second train appears to stop gaining it also appears
to begin losing. The two trains then run exactly together
ft:* no distance at all, not even for the smallest fraction of
an :nch, and yet we have to say that at one particular instant
our first train is going at the rate of 15 miles an hour, al-
though it does not continue to go at that rate during the
smallest portion of time. There is no way of measuring this
instantaneous velocity except that which has just been
described of comparing the motion with a uniform motion
having that particular velocity.

Upon this we have to make the very important remark
that the rate at which a body is going is a property as purely
instantaneous as is the precise position which it has at that
instant. Thus, if a stone be let fall to the ground, at the mo-
ment that it hits the ground it is going at a certain definite
rate; and yet at any previous moment it was not going so
fast, since it does not move at that rate for the smallest
fraction of a second. This consideration is somewhat diffi-
cult to grasp thoroughly, and in fact it has led many people
to reject altogether the hypothesis of continuity; but still
we may be helped somewhat in understanding it by means
of our study of the curve of positions, wherein we saw that
to a uniform motion corresponds a straight line and that the
rate of the motion depends on the steepness of the line.

Let us now suppose a motion in which a body goes at tr.
very slow but uniform rate for the first second, during the
next second uniformly but somewhat faster, faster again
during the third second, and so on. The curve of positions
will then be represented by a series of straight lines becoming
steeper and steeper and forming part of a polygon. From a
sufficient distance off this polygon will look like a curved
line; and if, instead of taking intei vas of a second during
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which the rates of motion are severally considered uniform,
we had taken intervals of a tenth of a second, then the
polygon would look like a curved line without our going so
far away as before. For the shorter the lengths of the sides
of our polygon, the more will it look curved, and if the in-
tervals of time are reduced to one-tenth the sides will be
only one-tenth as long. The rate at which the body under
consideration is moving when it is in the position to which
any point of the polygon corresponds, is obtained by pro-
longing that side of the polygon which passes through the
point; the rate will then depend on the steepness of this line,

al since, where the line is a side of the polygon, it represents
the uniform motion which the body has during a certain
interval. When the polygon looks like a curve the sides are
very short, and any side, being prolonged both ways, will
look like a tangent to the curve.

Now in considering the general case of varying motion we
should have, instead of the above polygon which looks like
a curve, an actual curve; the difference between them being
that, if we look at the curve-like polygon with a sufficiently
strong microscope, we shall be able to see its angles, but
however powerful a microscope we may apply to the curve
it will always look like a curve. But there is this property
in common, that if we draw a tangent to the curve at any
point, then, since the steepness of this tangent will be ex-
actly the same as the steepness of the curve at that particular
point, it will give the rate for the motion represented by the
curve, just as before the steepness of the prolonged small
side of the polygon gave the rate for the motion represented
by the polygon. That is to say, the instantaneous velocity of
a body in auy position may be learnt from its curve of posi
tions by drawing a tangent to this curve at the point cor-
responding to the position; for the steepness of this tangent
will give us the velocity or rate which we want, since the
tangent itself corresponds to a uniform motion of the same
velocity as that belonging to the given varying motion at
the particular instant. From this means of representing the
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rate we can see how it is that the instantaneous velocity of a
body generally belongs to it only at an instant and not for
any length of time however short; for the steepness of the
curve is continually changing as we go from one part of it
to another, and the curve is not straight for any portion of
its length however small.

The problem of determining the instantaneous velocity
in a given position is therefore reduced to the problem of
drawing a tangent to a given curve. We have a sufficiently
clear general notion of what is meant by each of these things,
but the notion which is sufficient for purposes of ordinary
discourse is not sufficient for the purposes of reasoning, and
it must therefore be made exact. Just as we had to make
our notion of the ratio of two quantities exact by means of
a definition of the fourth proportional, or of the equality of
two ratios which were expressed in terms of numbers, so
here we shall have to make our idea or a velocity exact by
expressing it in terms of measurable quantities which do not
change.

We have no means of measuring the instantaneous velocity
of a moving body; the only thing that we can measure is
the space which it traverses in a given interval of time. In
the case in which a body is moving uniformly, its instantane-
ous velocity, being always the same, is completely specified
as scon as we know how far the body has gone in a definite
time. And, as we have already observed, the result is the
same whatever this interval of time may be; the rate of four
miles an hour is the same as eight miles in two hours, or two
miles in half an hour, or one mile in a quarter of an hour.
But if a body be moving with a velocity which is continually
changing, the knowledge of how far it has gone in a given
interval of time tells us nothing about the instantaneous
velocity for any position during that interval. To say, for
instance, that a man has travelled a distance of four miles
durirg an hour, does not give us any information about the
actual rate at which he was going at any moment during
the hour, unless we know that he has been going at a uni-
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form rate. Still we are accustomed to say that in such a case
he must have been going on an average at the rate of four
miles an hour; and, as we shall find it useful to speak of this
rate as an "average velocity," its general definition may be
given as follows:

If a body has gone over a certain distance in a certain
time its mean or average velocity is that with which, if it
travelled uniformly, it would get over the same distance in
the same time.

This mean velocity is very simply represented by the help
of the curve of positions. Let a and b (Fig. 114) be two points

FIG. 114

on the curve of positions; then the mean velocity between the
position represented by a and that represented by b is given
by the steepness of the straight line a b. This, moreover,
enables us to make some progress towards a method of
calculating instantaneous velocity, for we showed that the
problem of finding the instantaneous velocity of a body is,
in the above method of representation, the problem of draw-
ing a tangent to a curve. Now the mean velocity of a body
is defined in terms of quantities which we are already able
to measure, for it requires the measurement of an interval
of time and of the distance traversed during that interval;
and further the chord of a curve, i.e. the line joining one
point of it to another, is a line which we are able to draw. If
then we can find some means of passing from the chord of a
curve to the tangent, the representation we have adopted
will help us to pass from the mean to the instantaneous
velocity.

"N.
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§5. On the Tangent to a Curve
Now let us suppose the chord a b (Fig. 115) joining the

points on the curve to turn round the point a, which remains
fixed; then b will travel along the curve towards a; and if we

a b

Fic. 115

suppose b not to stop in this motion until it has got beyond a
to a point such as b' on the other side, the chord will have
turned round into the position a b'. Now, looking at the
curve which is drawn in the figure, we see that the tangent
to the curve at a obviously lies between a b and b' a. Thus if
a b turn round a so as to move into the position a b' it will
at some instant have to pass over the position of the tangent.
At the instant when it passes over this position where is the
point b? We can at once see from the figure that it cannot
be anywhere else than at a, and yet we cannot attach any
definite meaning to a line described as joining two coincident
points. If we could, the determination of the tangent would
be very easy, for in order to draw the tangent to the curve at
a, we should merely say, Take any other point b on the
curve; join a b by a straight line; then make b travel along
the curve towards a, and the position of the line a b when b
has got to a is that of the tangent at a. Here however arises
the difficulty which we have already pointed out, namely,
that we cannot form any distinct conception of a line joining
two coincident points; two separate points are necessary in
order to fix a straight line. But it is clear that, although it is
not yet satisfactory, there is still something in the definition
that is useful and correct; for if we make the chord turn from
the position a b to the position of the tangent at a, the point
b does during this motion move along the curve up to the
point a.
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This difficulty was first cleared up and its explanation
made a matter of common sense by Newton. The nature of
his explanation is as follows :Let us for simplicity take the
curve to be a circle. If a straight stick be taken and bent so
as to become part of a circle, the size of this circle will depend
upon the amount of bending. The stick may be bent com-
pletely round until the ends meet, and then it will make a
very small circle; or it may be bent very slightly indeed, and
then it will become part of a very large circle. Now, con-
versely, suppose that we begin with a small circle, and, hold-
ing it fast at one point, make it get larger and larger, so that
the piece we have hold of gets less and less bent; then, as
the circle becomes extremely large, any small portion of it will
more and more nearly approximate to a straight line. Hence
a circle possesses this property, that the more it is magni-
fied the straighter it becomes; this property likewise belongs
to all the curves which we require to consider. It is sometimes
expressed by saying that the curve is straight in its elements,
or in its smallest parts; but the statement must be under-.
stood to mean only this, that the smaller the piece of a curve
is taken the straighter it will look when magnified to a given
length.

Now let us apply this to the problem of determining the
position of a tangent. Let us suppose the tangent a t of a circle
to be already drawn, and that a certain convenient length.is

a t T

FIG. 116

I I
0

B

marked off upon it (Fig. 116) ; from the end of this T let a
perpendicular be drawn to meet the circle in B, and let a be
joined to B by a straight line. We have now to consider the
motion of the point B along the circle as the chord a B is turn-
ing round a towards the position a T; and the difficulty in
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our way is clearly that figures like a B T get small, as for
example a b 1, and continue to decrease until they cease to
be large enough to be definitely observed. Newton gets over
this difficulty by supposing that the figure is always magni-
fied to a definite size; so that instead of considering the
smaller figure a b t we magnify it throughout until a t is
equal to the original length a T. But the portion a b of the
circle with which we are now concerned is less than the
former portion a B; consequently when it is magnified to
the same length (or nearly so) it must appear straighter.
That is to say, in the new figure a b' T, which is a b t magni-
fied, the point b' will be nearer to the point T than B in the
old one a B T; consequently, also, as b moves along to a the
chord a b will get nearer to the tangent a T, or, what is the
same thing, the angle t a b will get smaller. This last result
is clear enough, because, as we previously supposed, the
chord a b is always turning round towards the position a t.

But now the important thing is that, by taking b near
enough to a, we can make the curve in the magnified figure
as straight as we please; that is to say, we can make b' ap-

a

FIG. 117

proach as near as we like to T. If we were to measure off from
T perpendicularly to a T any length, however small, say T d
(Fig. 117), then we can always draw a circle which shall have
a T for a tangent and which shall pass between T and d; and,
further, if we like to draw a lire a d making a very small angle
with a T, then it will still be possible to make b go so close to a
4hat in the magnified figure the angle b' a T shall be smaller
than the angle d a T which we have drawn.

I Now mark what this process, which has been called New-
ton's microscope, really means. While the figure which we
wish to study is getting smaller and smaller, and finally
disappears altogether, we suppose it to be continually mag-
nified, so as to retain a.convenient size. We have one point
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moving along a curve up towards another point, and we
want to consider what happens to the line joining them when
the two points approach indefinitely near to one another.
The result at which we have arrived by means of our micro-
scope is that, by taking the points near enough together, the
line may be made to approach as near as we please to the
tangent to the curve at the point a. This, therefore, gives us
a definition of the tangent to a curve in terms only of meas-
urable quantities. If at a certain point a of a curve there is
a line a t possessing the property that by taking b near enough
to a on the curve the line a b can be brought as near as we
like to a t (that is, the angle b a t made less than any assigned
angle, however small), then a t is called the tangent to the
curve at the point a. Observe that all the things supposed
to be done in this definition are things which we know can
be done. A very small angle can be assigned; then, this
angle being drawn, a position of the point b can be found
which is such that a b makes with a t an angle smaller than
this. A supposition is here made in terms of quantities which
we already know and can measure. We only suppose in ad-
dition that, however small the assigned angle may be, the
point b can always be found; and if this is possible, then in
the case in which the assigned angle is extremely small,
the line a b or a t (for they now coincide) is called a tangent.

It is worth while to observe the likeness between this
definition and the one that we previously discussed of the
fourth proportional or of the equality of ratio. In that defi-
nition we supposed that, a certain fraction being assigned,
if the first ratio were greater than this fraction, so also was
the second ratio, and if less, less; and the question whether
these ratios were greater or less is one that can be settled
by measurement and comparison. We then made the further
supposition that whatever fraction were assigned the same
result would hold good; and we said that in that case the
ratios were equal. Now in both of these definitions, applying
respectively to tangents and to ratios, the difficulty is that
we cause a particular supposition to be extended so as to be



general; for we assume that a statement which can be very
easily tested and found true in any one case is true in an in-
finite number of cases in which it has not been tested. But
although the test cannot be applied individually to all these
cases in a practical way, yet, since it is true in any individual
case, we know on rational grounds that it must be satisfied
in general; and therefore, justified by this knowledge, we
arc able to reason generally about the equality of ratios and
about the tangents to curves.

Let us now translate the definition at which we have thus
arrived from the language of curves and tangents into the
language of instantaneous and mean velocities. The steep-
ness of the chord of the curve of positions indicates the mean
velocity, while the steepness of the tangent to the curve
at ary point indicates the instantaneous velocity at that
point. The process of making the point b move nearer and
nearer to the point a corresponds to taking for consideration
a smaller and smaller interval of time after that moment at
which the instantaneous velocity is wanted.

Suppose, then, the velocity of a body, viz. a railway train,
to be varying, and that we want to find what its value is at
a given instant. We might get a very rough approximation
to it, or in some cases no approximation at all, by taking
the mean velocity during the hour which follows that instant.
We should get a closer approximation by taking the mean
velocity during the minute succeeding that instant, because
the instantaneous velocity would have less time to change.
A still closer approximation would be obtained were we to
take the mean velocity during the succeeding second. In all
motions we should have to consider that we could make the
approximation as close as we like by taking a sufficiently
small interval. That is to say, if we choose to name any very
small velocity, such as one with which a body going uni-
formly would move only an inch in a century, then, by taking
the [time] interval small enough, it will be possible to make
the mean velocity differ from the instantaneous velocity by
less than this amount. Thus, finally, we shall have the fol-
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lowing definition of instantaneous velocity: If there is a cer-
tain velocity to which the mean velocity during the interval
succeeding a given instant can be made to approach as near
as we like by taking the interval small enough, then that
velocity is called the instantaneous velocity of the body at
the given instant.

In this way then we have reduced the problem of finding
the velocity of a moving body at any instant to the problem
of drawing a tangent to its curve of positions at the corre-
sponding point; and what we have already proved amounts
to saying that, if the position of the body be given in terms
of the time by means of a curve, then the velocity of the
body will be given in terms of the time by means of the
tangent to this curve.

Now there are many curves to which we can draw tangents
by simple geometrical methods, as, for example, to the ellipse
and the parabola; so that, whenever the curve of positions
of a body happens to be one of these, we are able to find by
geometrical construction the velocity of the body at any
instant. Thus in the case of a falling body the curve of posi-
tions is a parabola, and we might fmd by the known proper-
ties of the tangent to a parabola that the velocity in this
case is proportional to the time. But in the great majority of
cases the problem of drawing a tangent to the curve of posi-
tions is just as difficult as the original problem of deter-
mining the velocity of a moving body, and in fact we do in
many cases solve the former by means of the latter.'

§6. On the Determination of Variable Velocity

What is actually wanted in every case will be apparent
from the consideration of the problem we have just men-
tionedthat of a body falling down straight. We note, from
the experience of Galilei, that the whole distance which the
body has fallen from rest at any instant is proportional to
the square of the time; in fact, to obtain this distance in feet

1 The method is due to Roberval (1602-1675).
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we mud multiply the number of seconds by itself and the
result by a number a little greater than sixteen. Thus, for
instance, in five seconds the body will have fallen rather
more than twenty-five times sixteen feet, or 400 feet. Now
what we want is some direct process of proving that when
the distance traversed is proportional to the square of the
time the velocity is always proportional to the time. In the
present case we can find the velocity at the end of a given,.
number of seconds by multiplying that number by thirty-
two feet; thus at the end of five seconds the velocity of the
body will be 160 feet per second.' Now as a matter of fact a

1 The following may be taken as a proof. Let a be the distance from rest
moved over by the bosly in I seconds, b that moved over by :t in t + t' seconds,
so that r seconds is the interval we take to find out the mean velocity. Now
by our rule just quoted, since a feet are passed over in t seconds, we have

a = 1612,
and similarly b = 16(1 + t')2 = 16(0 + 2U' + 1 2).
Hence we have b a = 16(0 + 211' + t") 16t2

= 16(211' + t'2)
= 16t'(2t + r),

giving the distance moved over in the interval t'. But the mean velocity during
this interval is obtained by dividing the distance moved over by the time taken
to traverse it; hence the mean velocity in our case for the interval of r seconds
immediately succeeding the t seconds

b a
= t,

16t'(2t + r)
t'

= 16(21 + r)
= 321 + 16r.

Now if we look at this result, which we have obtained for the mean velocity,
we see that there are two terms in it. The first, viz. 321, is quite independent
of the interval r which we have taken; the second, viz. 161', depends directly
on it, and will therefore change when we change, the interval. Now the distance
per second represented by 161' feet can be made as small as we like by taking
r small enough; so that the mean velocity during the interval t' seconds
succeeding the given instant can be made to approach 321 feet per second
as near as we like by taking e small enough. Recurring to our definition of in-
stantaneous velocity, it is now evident that the instantaneous velocity of our
falling body at the end of t seconds is 321 feet per second.
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process (of which there is a simple example in the footnote)
has been worked out, by which from any algebraical rule
telling us how to calculate the distance traversed in terms
of the time we can find another algebraical rule which will
tell us how to calculate the velocity in terms of the time.
One case of the process is this: If the distance traversed is
at any instant a times the nth power of the time, then the
velocity at any instant will be na times the (n-1)th power
of the time. It is by means of this process of altering one
algebraical rule so as to get another from it that both of the
problems which we have shown to be equivalent to one an-
other are solved in practice.

There is yet another problem of very great importance in
the study of natural phenomena which can be made to de-
pend on these two. When a point moves along a straight
line the distance of it from some fixed point in the line is a
quantity which varies from time to time. The rate of eaange
of this distance is the same thing as the velocity of the mov-
ing point; and the rate of change of any continuous quantity
can only be properly represented by means of the velocity
of a point.

Thus, for instance, the height of the tide at a given port
will vary from time to time during the day, and it may be
indicated by a mark which goes up and down on a stick.
The rate at which the height of the tide varies will obviously
be the same thing as the velocity with which this mark goes
up and down. Again the pressure of the atmosphere is indi-
cated by means of the height of a mercury barometer. The
rate at which this pressure changes is obviously the same
thing as the velocity with which the surface of the mercury
moves up and down. Now whenever we want to describe the
changes which take place in any quantity in terms of the
time, we may indeed roughly and approximately do so by
means of a table. But this is also the most troublesome way;
the proper way of describing them is by drawing a curve in
which the abscissa, or horizontal distance, at any point repre-
sents the time, while the height of the curve at that point



represents the value of the quantity at that time (see p. 167).
Whenever this is done we practically suppose the variation
of the quantity to be represented by the motion of the point
on a curve. The quantity can only be adequately represented
by marking off a length proportional to it on a line; so that
if the quantity varies then the length marked off will vary,
and consequently the end of this length will move along the
curve. The rate at which the quantity varies is the rate at
which this point moves; and when the values of the quantity
for different times are represented by the perpendicular dis-
tances of points on a curve from the line which represents
the time, its rate of variation is determined by the tangent
to that curve.

§7. On the Method of Fluxions

Hence we have three problems which are practically the
same. First, to find the velocity of a moving point when
we know where it is at every instant; secondly, to draw a
tangent to a curve at any point; thirdly, to find the rate of
change of a quantity when we know how great it is at every
instant. And the solution of them all depends upon that
process by which, when we take the algebraical rule for
finding the quantity in terms of the time, we deduce from
it another rule for finding its rate of change in terms of the
time.

This' particular process of deriving one algebraical rule
from another was first investigated by Newton. He was ac-
customed to describe a varying quantity as a fluent, and its
rate of change he called the fluxion of the quantity. On ac-
count of these names, the entire method of solving these
problems by means of the process of deriving one algebraical
rule from another was termed the Method of Fluxions.

In general the rate of variation of a quantity will itself
change from time to time; but if we consider only an interval
very small as compared with that required for a considerable
variation of the quantity, we may legitimately suppose that
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it has not altered much during that interval. This is prac-
tically equivalent to supposing that the law of change has
been uniformly true during that interval, and that the rate
of change does not differ very much from its mean value.
Now the mean rate of change of a quantity during an interval
of time is just the difference between the values of the quan-
tity at the beginning and at the end divided by the interval.
If any q lantity increased by one inch ia a second, then, al-
though it may not have been increasing uniformly, or even
been increa:ing at all during the whole of that second, yet
during the second its mean rate of increase was one inch per
second. Now if the rate of increase only changes slowly we
may, as an approximation, fairly suppose it to be constant
during the second, and therefore to be equal to the mean
rate; and, as we know, the smaller the interval of time is, the
less is the error arising from this supposition. This is, as a
matter of fact, the way in which that process is established
by means of which a rule for calculating position is altered
into a rule for calculating velocity. The difference between
the distances of the moving point from some fixed point on
the line at two different times is divided by the interval be-
tween the times, and this gives the mean rate of change
during that interval. If we find that, by making the interval
smaller and smaller, this mean rate of change gets nearer
and nearer to a certain value, then we conclude that this
value is the actual rate of change when we suppose the in-
terval to shrink up into an instant, or that it is, as we call it,
the instantaneous rate of change.

Because two differences are used in the argument which
establishes the process for changing the one rule into the
other, this process was called, first in other countries and
then also in England, the Differential Calculus. The name is
an unfortunate one, because the rate of change which is
therein calculated has nothing to do with differences, the
only connection with differences being that they are men.
tioned in the argument which is used to establish the process.
However this may be, the object of the differential calculus
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or of the method of fluxions (whichever name we choose to
give it) is to find a rule for calculating the rate of change of
a quantity when we have a rule for -alculatire3 the quantity
itselt; and we have seen that w') this can be done the
problem of drawing a tangent to a curve and that of finding
the velocity of a moving point are also solved.

§8. Of the Relationship of Quantities, or Functions

But we not only have rules for calculating the value of a
quantity at any time, but also rules for calculating the
value of one quantity in terms of another quite independ-
ently of the time. Of the former class of rules an example is
the one mentioned above for calculating the rise of the tide.
We may either write down a formula which will enable us to
calculate it at a given instant, or we may draw a curve which
shall represent its rise at different times of the day. Of the
second kind of rule a good example is that in which the
pressure of a given quantity of gas is given in terms of its
volume when the temperature is supposed to be constant;
the algebraical statement of the rule giving the relation be-
tween them is that the two things vary inversely as one an-
other, or that the product representing them is constant.

rl Lb.0

FIG. 118

Thus if we compress a mass of air to one-half of its natural
volume the pressure will become twice as great, or will be,
as it is called, two "atmospheres." And so if we compress it
to one-fifth of the volume the pressure will become five
times as great, or five atmospheres (Fig. 118).

otl 0,
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Galileo uses a thought experiment in discussing projec-
tile 'notion, a typical device of the scientist to this day.
Galileo's hook was originally published in 1632.

11 Galileo's Discussion of Projectile Motion

Gerald Holton and Duane H. D. Roller

1958
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3.1 Galileo's discussion of projectile motion. To this point we have
been solely concerned with the motion of objects as characterized by their
speed; we have not given much consideration to the direction of motion, or
to changes in direction of motion. Turning now to the more general prob-
lem of projectile motion, we leave the relatively simple case of bodies
moving in a straight line only and exp-ad our methods to deal with pro-
jectiles moving along curved paths. Our understanding of this field will
hinge largely on a far-reaching idea: the observed motion of a projectile
may be thought of as the result of two separate motions, combined and
occurring simultaneously; one component of motion is in a horizontal
direction and without acceleration, whereas the other is in a vertical direc-
tion and has a constant acceleration downward in accordance with the
laws of free fall. Furthermore, these two components do not interfere with
each other; each component may be studied as if the other were not present.
Thus the whole motion of the projectile at every moment is simply the
result of the two individual actions.

This principle of the independency of the horizontal and vertical com-
ponents of projectile motion was set forth by Galileo in his Dialogue on the
great world systems (1632). Although in this work he was principally con-
cerned with astronomy, Galileo already knew that terrestrial mechanics
offered the clue to a better understanding of planetary motions. Like the
Two new sciences, this earlier work is cast in the form of a discussion among
the same three characters, and also uses the Socratic method of the Platonic
dialogues. Indeed, the portion of interest to us here begins with Salviati
reiterating one of Socrates' most famous phrases, as he tells the Aristotelian
Simplicio that he, Simplicio, knows far more about mechanics than he is
aware:*

Salvia& . . . Yet I am so good a midwife of minds that I will make you con-
fess the same whether you will or no. But Sagredus stands very quiet, and yet,
if I mistake not, I saw him make some move as if to speak.

Sagredo: I had intended to speak a fleeting something; but my curiosity
aroused by your promising that you would force Simplicius to uncover the
knowledge which he conceals from us has made me depose all other thoughts.
Therefore I pray you to make good your vaunt.

*These extracts from Galileo's Dialogue on the great world systems, as well as
those appearing in later chapters, are taken from the translation of T. Salusbury,
edited and corrected by Giorgio de Santillana (University of Chicago Press,
1953).
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Salviati: Provided that Simplicius consents to reply to what I shall ask him,
I will not fail to do it.

Simplicio: I will answer what I know, assured that I shall not be much put
to it, for, of those things which I hold to be false, I think nothing can be
known, since Science concerns truths, not falsehoods.

Salviati: I do not desire that you should say that you know anything, save
that which you most assuredly know. Therefoie, tell me; if you had here a
flat surface as polished as a mirror and of a substance as hard as steel that
was not horizontal but somewhat inclining, and you put upon it a perfectly
spherical ball, say. of bronze, what do you think it would do when released?
Do you not believe (as for my part I do) that it would lie still?

Simplicio: If the surface were inclining?
Salviati: Yes, as I have already stated.
Simplicio: I cannot conceive how it should lie still. I am confident that it

would move towards the declivity with much propenseness.
Salviati: Take good heed what you say, Simplicius, for I am confident that

it world lie still in whatever place you should lay it.
Simplicio: So long as you make use of such suppositions, Salviatus, I shall

rase to wonder if you conclude most absurd conclusions.
Salviati: Are you assured, then, that it would freely move towards the

declivity?
Simplicio: Who doubts it?
Salviati: And this you verily believe, not because I told you so (for I

endeavored to persuade you to think the contrary), but of yourself, and upon
your natural judgment?

Simplicio: Nov I see your game; you did not say this really believing it, but
to try me, and to wrest words out of my mouth with which to condemn me.

Salviati: You are right. And how long and with what velocity would that
ball move? But take notice that I gave as the example a ball exactly round,
and a plane exquisitely polished, so that all external and accidental impedi-
ments might be taken away. Also I would have you remove all obstructions
caused by the air's resistance and any other causal obstacles, if any other
there can be.

Simplicio: I understand your meaning very well and answer that the ball
would continue to move in infinitum if the inclination of the plane should last
so long, accelerating continually. Such is the nature of ponderous bodies that
they acquire strength in going, and, the greater the declivity, the greater
the velocity will be.

Simplicio is next led to express his belief that if he observed the ball
rolling up the inclined plane he would know that it had been pushed or
thrown, since it is moving contrary to its natural tendencies. Then Sal-
viati turns to the intermediate case:

Salviati: It seems, then, that hitherto you have well explained to me the
accidents of a body on two different planes. Now tell me, what would befall
the same body upon a surface that had neither acclivity nor declivity?
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Galileo's Discussion of Projectile Motion

Simplicio: Here you must give me a little time to consider my answer. There
being no declivity, there can be no natural inclination to motion; and there
being no acclivity, there can be no resistance to being moved. There would
then arise an indifference between propulsion and resistance; therefore, I think
it ought naturally stand still. But I had forgot myself; it was not long ago
that Sagredus gave me to understand that it would do so.

Salviati: So I think, provided one did lay it down gently; but, if it had an
imp "tus directing it towards any part, what would follow?

Simplicio: That it should Move towards that part.
Salvioti: But with what kind of motion? Continually accelerated, as in

declining planes; or successively retarded, as in those ascending?
Simplicio: I cannot tell how to discover any cause of acceleration or re-

tardation, there being no decliyity or acclivity.
Salviati: Well, if there be no cause of retardation, even less should there be

any cause of rest. How long therefore would you have the body move?
Simplicio: As long as that surface, neither inclined nor declined, shall last.
Salviati: Therefore if such a space were interminate, the motion upon it

would likewise have no termination, that is, would be perpetual.
Simplicio: I think so, if the body is of a durable matter.
Salviati: That has been already supposed when it was said that all external

and accidental impediments were removed, and the brittleness of the body in
this case is one of those accidental impediments. Tell me now, what do you
think is the cause that that same ball moves spontaneously upon the inclining
plane, and does not, except with -,iolence, upon the plane sloping upwards?

Simplicio: Because the tendency of heavy bodies is to move towards the
center of the Earth and only by violence upwards towards the circumference.
[This is the kernel of the Scholastic viewpoint on falling bodies (see Section
2.3). Salviati does not refute it, but turns it to Galileo's purposes.]

Salviati: Therefore a surface which should be neither decliningnor ascending
ought in all its parts to be equally distant from the center. But is ther;-, sny
such surface in the world?

Simplicio: There is no want of it, such is our terrestrial globe, for example,
if it were not rough and mountainous. But you haye that of the water, at
such time as it is calm and still.

Here is the genesis of one of the fundamental principles of the new
mechanics: if all "accidental" interferences with an object's motion are
removed, the motion will endure. The "accidents" are eliminated in this
thought experiment by: (1) proposing the use of a perfectly round, per-
fectly hard ball on a perfectly smooth surface, and (2) by imagining the
surface to be a globe whose surface is everywhere equidistant from the
center of the earth, so that the ball's "natural tendency" to go downward is
balanced by the upward thrust of the surface. (We shall return to this
latter point in our discussion of isolated systems in Chapter 16.) Note
carefully the drastic change from the Scholastic view: instead of asking
"What makes the ball move?" Galileo asks "What might change its
motion?"
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Having turned the conversation to smooth water, Galileo brings in the
motion of a stone dropping from the mast of a moving ship. Since the
storm is moving horizontally with the ship before it is dropped, it should
cont. me to move horizontally while it falls.

Sagredo: If it be true that the
impetus with which the .ship moves
remains Lidelibly impressed in the
stone after it is let fall from the
mast; and if it be further true that
this motion brings no impediment
or retardment to the motion directly
downwards natural to the stone,
then there ought to ensue an effect
of a very wonderful nature. Suppose
a ship stands still, and the time of
the falling of a stone from the mast's
round top to the deck is two beats
of the pulse. Then afterwards have
the ship under sail and let the same
stone depart from the same place.
According to what has been prem-
ised, it shall still take up the time of
two pulses in its fall, in which time
the ship will have gone, say, twenty
yards. The true motion of the stone
then will be a transverse line [i.e., a
curved line in the vertical plane, see
Fig. 3.1), considerably longer than
the first straight and perpendicular
line, the height of the mast, and
yet nevertheless the stone will have
passed it in the same time. Increase
the ship's velocity as much as you
will, the falling stone shall describe
its transverse lines still longer and
longer and yet shall pass them all in
those selfsame two pulses. In this
same fashion, if a cannon were lev-
eled on the top of a tower, and fired point-blank, that is, horizontally, and
whether the charge were small or large with the ball falling sometimes a
thousand yards distant, sometimes four thousand, sometimes ten, etc., all
these shots shall come to ground in times equal to each other. And every
one equal to the time that the ball would take to pass from the mouth of the
piece to the ground, if, without other impulse, it falls simply downwards in
a perpendicular line. Now it seems a very admirable thing that, in the
same short time of its falling perpendicularly down to the ground from the
height of, say, a hundred yards, equal balls, fired violently out of the piece,

L

FIG. 3.1. A stone dropped from the
mast of a ship in uniform motion. From
the shore the trajectory of the stone is
seen to be a curved line (parabola).
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FIG. 3.2. For cannon balls fired horizontally with different initial forward
speeds, "all the balls in all the shot: made horizontally remain in the air an
equal time."

should be able to pass four hundred, a thousand, even ten thousand yards.
All the balls in all the shots made horizontally remain in the air an equal
time [Fig. 3.2J.

Salviati: The consideration is very elegant for its novelty and, if the effect
be true, very admirable. Of its truth I make no question, and, were it not for
the accidental impediment of the air, I verily believe that, if at the time of the
ball's going out of the piece another were let fall from the same height directly
downwards, they would both come to the ground at the same instant, though
one should have traveled ten thousand yards in its range, and another only a
hundred, presupposing the surface of the Earth to be level. As for the impedi-
ment which might come from the air, it would consist in retarding the extreme
swift motion of the shot.

3.2 Projectile launched horizontally. Galileo's two thought experiments
may be rephrased and analyzed in terms of two modern examples.

(1) If we watch an airplane in steady horizontal flight drop a small,
heavy object, we shall see that the object remains very nearly directly
below the plane while, of course, dropping closer and closer to the ground
(Fig. 3.3). If we had been riding in the plane when the object was dropped,
we would have seen only the horizontal part (component) of the motion;
that is, we would have seen the object traveling along directly under the
plane, although of course appearing to become smaller and smaller as it
receded toward the ground. The clear implication is that the horizontal
component of the motion of the object remains what it was at the moment of
release from the plane, even though there is superposed on it the ever-
increasing speed downward.
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This chapter from a beginning college physics text is not
simple, but the reward of this numei ical approach to
Newtonian mechanics is a more powerful understanding
of how the laws of motion work.

12 Newton's Laws of Dynamics

Richard P. Feynman, Robert B. Leighton and Matthew Sands

1963

9-1 Momentum and force

The discovery of the laws of dynamics, or the laws of motion, was a dramatic
moment in the history of science. Before Newton's time, the motions of things
like the planets were a mystery, but after Newton there was complete under-
standing. Even the slight deviations from Kepler's laws, due to the perturbations
of the planets, were computable. The motions of pendulums, oscillators with
springs and weights in them, and so on, could all be analyzed completely after
Newton's laws were enunciated. So it is with this chapter: before this chapter we
could not calculate how a mass on a spring would move; much less could we
calculate the perturbations on the planet Uranus due to Jupiter and Saturn. After
this -napter we vill be able to compute not only the motion of the oscillating mass,
but also the perturbations on the planet Uranus produced by Jupiter and Saturn!

Galileo made a great advance in the understanding of motion when he
discovered the principle of inertia: if an object is left alone, is ;tot disturbed, it
continues to move with a constant velocity in a straight line if it was originally
moving, or it continues to stand still if it was just standing still. Of course this
never appears to be the case in nature, for if we slide a block across a table it stops,
but that is because it is not left to itselfit is rubbing against the table. It required
a certain imagination to find the right rule, and that imagination was supplied

by Galileo.
Of course, the next thing which is needed is a rule for finding how an object

changes its speed if something is affecting it. That is the contribution of Newton.
Newton wrote down three laws: The First Law was a mere restatement of the
Galilean principle of inertia just described. The Second Law gave a specific way
of determining how the velocity changes under different influences called forces.
The Third Law describes the forces to some extent, and we shall discuss that at
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another time. Here we shall discuss only the Second Law, which asserts that the
motion of an object is changed by forces in this way: the time-rate-of-change of a
quantity called momentum is proportional to the force. We shall state this mathe-
matically shortly, but let us first explain the idea.

Momentum is not the same as velocity. A lot of words are used in physics,
and they all have precise meanings in physics, although they may not have such
precise meanings in everyday language. Momentum is an example, and we must
define it precisely. If we exert a certain push with our arms on an object that is
light, it moves easily; if we push just as hard on another object that is much heavier
in the usual sense, then it moves much less rapidly. Actually, we must change the
words from "light" and "heavy" to less massive and more massive, because there
is a difference to be understood between the weight of an object and its inertia.
(How hard it is to get it going is one thing, and how much it weighs is something
else.) Weight and inertia are proportional, and on the earth's surface are often
taken to be numerically equal, which causes a certain confusion to the student.
On Mars, weights would be different but the amount of force needed to overcome
inertia would be the same.

We use the term mass as a quantitative measure of inertia, and we may
measure mass, for example, by swinging an object in a circle at a certain speed and
measuring how much force we need to keep it in the circle. In this way we find a
certain quantity of mass for every object. Now the momentum of an object is a
product of two parts: its mass and its velocity. Thus Newton's Second Law may
be written mathematically this way:

d
F =-- yt(my). (9.1)

Now there are several points to be considered. In writing down any law such as
this, we use many intuitive ideas, implications, and assumptions which are at
first combined approximately into our "law." Later we may have to come back
and study in greater detail exactly what each term means, but if we try to do this
too soon we shall get confused. Thus at the beginning we take several things for
granted. First, that the mass of an object is constant; it isn't really, but we shall
start out with the Newtonian approximation that mass is constant, the same all
the time, and that, further, when we put two objects ,gether, their masses add.
These ideas were of course implied by Newton when he wrote his equation, for
otherwise it is meaningless. For example, suppose the mass varied inversely as the
velocity ; then the momentum would never change in any circumstance, so the law
means nothing unless you know how the mass changes with velocity. At first
we say, it does not change.

Then there are some implications concerning force. As a rough approximation
we think of force as a kind of push or pull that we make with our muscles, but
we can define it more accurately now that we have this law of motion. The most
important thing to realize is that this relationship involves not only changes in
the magnitude of the momentum or of the velocity but also in their direction.
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Newton's Laws of Dynamics

If the mass is constant, then Eq. (9.1) can also be written as

F m
dv

ma
(9.2)

The acceleration a is the rate of change of the velocity, and Newton's Second
Law says more than that the effect of a given force varies inversely as the mass;
it says also that the direction of the change in the velocity and the direction of the
force are the same. Thus we must understand that a change in a velocity, or an
acceleration, has a wider meaning than in common language: The velocity of a
moving object can change by its speeding up, slowing' down (when it slows down,
we say it accelerates with a negative acceleration), or changing its direction of
motion. An acceleration at tied angles to the velocity was discussed in Chapter 7.
There we saw that an objec, Icving in a circle of radius R with a certain speed v
along the circle falls away from a straightline path by a distance equal to i(v2/R)t2
if t is very small. Thus the formula for acceleration at right angles to the motion is

a = v21 R, (9.3)

and a force at right angles to the velocity will cause an object to move in a curved
path whose radius of curvature can be found by dividing the force by the mass to
get the accelerat:on, and then using (9.3).

r.
Y

Fig. 9-1, A small displacement of an object.

9-2 Speed and velocity

In order to make our language more precise, we shall make one further
definition in our use of the words speed and velocity. Ordinarily we think of speed
and velocity as being the same, and in ordinary language they are the same. But in
physics we have taken advantage of the fact that there are two words and ha' e
chosen to use them to distinguish two ideas. We carefully distinguish velocity,
which has both magnitude and direction, from speed, which we choose to mean
the magnitude of the velocity, but which does not include the direction. We can
formulate this more precisely by describing how the x-, y-, and z-coordinates of
an object change with time. Suppose, for example, that at a certain instant an
object is moving as shown in Fig. 9-1. In a given small interval of time At it
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will move a certain distance Ax in the x-di -ection, Ay in the y-direction, and Az in
the z-direction. The total effect of these thee coordinate changes is a displacement
As along the diagonal of a parallelepiped whose sides are Ax, Ay, and Az. In terms
of the velocity, the displacement Ax is the x-component of the velocity times At,
and similarly for Ay and Az:

Ax =-- r% At, Ay = r,, Lit, Az = r: At. (9.4)

9-3 Components of velocity, acceleration, and force

In Eq. (9.4) we have resolved the velocity into components by telling how fast theobject is moving in the x-direction, the y-direction, and the z-direction. The
velocity is completely specified, both as to magnitude and direction,. if we give the
numerical values of its three rectangular components:

l'x = dx/dt, r, = dy/dt, r, = dz/dt. (9.5)

On the other hand, the speed of the object is

r______
dS /di = id -= "V 1,1,2 + 1,,F, + v2z.

(9.6)

Next, suppose that, because of the action of a force, the velocity changes to
some other direction and a different magnitude, as shown in Fig. 9-2. We can
analyze this apparently complex situation rather simply if we evaluate the changes
in the x-, y-, and z-components of velocity. The change in the component of the
velocity in the x-direction in a time At is Ar.,. ---- a, At, where a, is what we call the
x-component of the acceleration. Similarly, we see that Jr = a At and Ore =a: At. In these terms, we see that Newton's Second Law, in saying that the forceis in the same direction as the acceleration, is really three laws, in the sense that
the component of the force in the x-. y-. or z-direction is equal to the mass times

Z ff: /1

Y Fig. 9-2. A change in velocity in
which both the magnitude and direction
change.
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the rate of change of the corresponding component of velocity:

F, = in(dr,/dt) = m(d2x/dt2) = ma,,
Fy = m(chydt) = m(d2y/c112) = may,
F, = m(dv:/dt) = m(d2z/dt2) = ma,.

(9.7)

Just as the velocity and acceleration have been resolved into components by
projecting a line segment representing the quantity and its direction onto three
coordinate axes, so, in the same way, a force in a given direction is represented
by certain components in the x-, y-, and z-directions:

F. = Fcos (x, F),
F = F cos (y, F), (9.8)

F, = Fcos (z, F),

where F is the magnitude of the force and (x, F) represents the angle between the
x-axis and the direction of F, etc.

Newton's Second Law is given in complete form in Eq. (9.7). If we know the
forces on an object and resolve them into x-, y-, and z-components, then we can
find the motion of the object from these equations. Let us consider a simple
example. Suppose there are no forces in the y- and z-directions, the only force
being in the x-direction, say vertically. Equation (9.7) tells us that there would be
changes in the velocity in the vertical direction, but no changes in the horizontal
direction. This was demonstrated with a special apparatus in Chapter 7 (see
Fig. 7-3). A falling body moves horizontally without any change in horizontal
motion, while it moves vertically the same way as it would move if the horizontal
motion were zero. In other words, motions in the x-, y-, and z-directions are
independent if the forces are not connected.

9-4 What is the force?

In order to use Newton's laws, we have to have some formula for the force;
these laws say pay attention to the forces. If an object is accelerating, some agency
is at work; find it. Our program for the future of dynamics must be to find the
laws for the force. Newton himself went on to give some examples. In the case
of gravity he gave a specific formula for the force. In the case of other forces he
gave some part of the information in his Third Law, which we will study in the
next chapter, having to do with the equality of action and reaction.

Extending our previous exampie, what are the forces on objects near the
earth's surface? Near the earth's surface, the force in the vertical direction due
to gravity is proportional to the mass of the object and is nearly independent of
height for heights small compared with the earth's radius R: F = GmM/ R 2 = mg,
where g = GM /R2 is called the acceleration of gravity. Thus the law of gravity
tells us that weight is proportional to mass; the force is in the vertical direction
and is the mass times g. Again we find that the motion in the horizontal direction
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TEQUILIBRIum
POSITION

Fig. 9-3. A mass on a spring.

is at constant velocity. The interesting motion is in the vertical direction, and
Newton's Second Law tells us

mg = m(exIdt2). (9.9)

Cancelling the m's, we find that the acceleration in the x-direction is constant and
equal tt, g. This is of course the well known law of free fall under gravity, which
leads to the equations

vx = vc, gt,

x = xo vot -1- igt2. (9.10)

As another example, let us suppose that we have been able to build a gadget
(Fig. 9-3) which applies a force proportional to the distance and directed oppositely
a spring. If we forget about gravity, which is of course balanced out by the
initial stretch of the spring, and talk only about excess forces, we see that if we
pull the mass down, the spring pulls up, while if we push it up the spring pulls
down. This machine has been designed carefully so that the force is greater, the
more we pull it up, in exact proportion to the displacement from the balanced
condition, and the force upward is similarly proportional to how far we pull down.
If we watch the dynamics of this machine, we see a rather beautiful motionup,
down, up, down, . .. The question is, will Newton's equations correctly describe
this motion? Let us see whether we can exactly calculate how it moves with this
periodic oscillation, by applying Newton's law (9.7). In the present instance,
the equation is

kx = m(dvx/dt). (9.11)

Here we have a situation where the velocity in the x-dircction changes at a rate
proportional to x. Nothing will be gained by retaining numerous constants, so
we shall imagine either that the. scale of time has changed or that there is an
accident in the units, so that we happen to have k/m = 1. Thus we shall try to
solve the equation

dvx/dt = x. (9.12)

To proceed, we must know what vx is, but of course we know that the velocity is
the rate of change of the position.

9-5 Meaning of the dynamical equations

Now let us try to analyze just what Eq. (9.12) means. Suppose that at a
given time t the object has a certain velocity vx and position x. What is the velocity
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and what is the position at a slightly later time t e? If we can answer this
question our problem is solved, for then we can start with the given condition and
compute how it changes for the first ;nstant, the next instant, the next instant, and
so on, and in this way we gradually evolve the motion. To be specific, let us suppose
that at the time t = 0 we are given that x = 1 and v. = 0. Why does the object
move at all? Because there is a force on it when it is at any position except x = 0.
If x > 0, that force is upward. Therefore the velocity which is zero starts to
change, because of the law of motion. Once it starts to build up some velocity
the object starts to move up, and so on. Now at any time t, if e is very small,
we may express the position at time t e in terms of the position at time t and
the velocity at time t to a very good approximation as

x(t e) = x(t) evx(t). (9.13)

The smaller the e, the more accurate this expression is, but it is still usefully accurate
even if e is not vanishingly small. Now what about the velocity? In order to get
the velocity later, the velocity at the time t e, we need to know how the velocity
changes, the acceleration. And how are we going to find the acceleration? That
is where the law of dynamics comes in. The law of dynamics tells us what the
acceleration is. It says the acceleration is x.

1.2.(1 e) = vz(t) ea.,(1) (9.14)

= ex(t). (9.15)

Equation (9.14) is merely kinematics; it says that a velocity changes because of
the presence of acceleration. But Eq. (9.15) is dynamics, because it relates the
acceleration to the force; it says that at this particular time for this particular
problem, you can replace the acceleration by x(t). Therefore, if we know both
the x and v at a given time, we know the acceleration, which tells us the new
velocity, and we know the new positionthis is how the machinery works. The
velocity changes a little bit because of the force, and the position changes a little
bit because of the velocity.

9-6 Numerical solution of the equations

Now let us really solve the problem. Suppose that we take e = 0.100 sec.
After we do all the work if we find that this is not small enough we may have to
go back and do it again with e = 0.010 sec. Starting with our initial value x(0) =
1.00, what is x(0.1)? It is the old position x(0) plus the velocity (which is zero)
times 0.10 sec. Thus x(0.1) is still 1.00 because it has not yet started to move.
But the new velocity at 0.10 sec will be the old velocity v(0) = 0 plus E times the
acceleration. The acceleration is x(0) = 1.00. Thus

r(0.1) = 0.00 0.10 X 1.00 = 0.10.
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Now at 0.20 sec

and

x(0.2) = x(0.1) + ev(0.1)
= 1.00 0.10 X 0.10 = 0.99

40.2) = r(0.1) + ea(0.1)
= 0.10 0.10 X 1.00 = 0.20.

And so, on and on and on, we can calculate the rest of the motion, and that is
just what we shall do. However, for practical purposes there are some little tricks
by which we can increase the accuracy. if we continued this calculation as we have
started it, we would find the motion only rather crudely because e = 0.100 sec
is rather crude, and we would have to go to a very small interval, say e = 0.01.
Then to go through a reasonable total time interval would take a lot of cycles of
computation. So we shall organize the work in a way that will increase the pre-
cision of our calculations, using the same coarse interval e = 0.10 sec. This can
be done if we make a subtle improvement in the technique of the analysis.

Notice that the new position is the old position plus the time interval e times
the velocity. But the velocity when? The velocity at the beginning of the time
interval is one velocity and the velocity at the end of the time interval is another
velocity. Our improvement is to use the velocity halfway between. If we know
the speed now, but the speed is changing, then we are not going to get the right
answer by going at the same speed as now. We should use some speed between
the "now" speed and the "then" speed at the end of the interval. The same
considerations also apply to the velocity: to compute the velocity changes, we
should use the acceleration midway between the two times at which the velocity
is to be found. Thus the equations that we shall actually use will be something
like this: the position later is equal to the position before plus e times the velocity
at the time in the middle of the interval. Similarly, the velocity at this halfway point
is the velocity at a time e before (which is in the middle of the previous interval)
plus e times the acceleration at the time t. That is, we use the equations

x(t + e) = x(t) + ev(t + 12),
v(t + e/2) = v(t e/2) + ea(t),

a(t) = x(1).
(9.16)

There remains only one slight problem: what is v(e/2)? At the start, we are given
v(0), not v(e/2). To get our calculation'started, we shall use a special equation,
namely, v(e/2) = v(0) + (e/2)a(0)

Now we are ready to carry through our calculation. For convenience, we
may arrange the work in the form of a table, with columns for the time, the position,
the velocity, and the acceleration, and the in-between lines for the velocity, as
shown in Table 9-1. Such a table is, of course, just a convenient way of representing
the numerical values obtained from the set of equations (9.16), and in fact the
equations themselves need never be written. We just fill in the various spaces in
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Newton's Laws of Dynamics

Table 9-1

Solution of dvxldt = -x

Interval: e = 0.10 sec

x v, az

0.0 1.000 0.000 -1.000
-0.050

0.1 0.995 -0.995
-0.150

0.2 0.980 -0.980
-0.248

0.3 0.955 -0.955
-0.343

0.4 0.921 -0.921
-0.435

0.5 0.877 -0.877
0.523

0.6 0.825 -0.825
-0.605

0.7 0.764 -0.764
-0.682

0.8 0.696 -0.696
-0.751

0.9 0.621 -0.621
-0.814

1.0 0.540 -0.540
0.868

1.1 0.453 -0.453
-0.913

1.2 0.362 -0.362
-0.949

1.3 0.267 -0.267
-0.976

1.4 0.169 -0.169
-0.993

1.5 0.070 -0.070
1.000

1.6 -0.030 +0.030

the table one by one. This table now gives us a very good idea of the motion:
it starts from rest, first picks up a little upward (negative) velocity and it loses
some of its distance. The acceleration is then a little bit less but it is still gaining
speed. But as it goes on it gains speed more and more slowly, until as it passes
x = 0 at about t = 1.50 sec we can confidently predict that it will keep going,
but now it will be on the other side; the position x will become negative, the ac-
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celeration therefore positive. Thus the speed decreases. It is interesting to compare
these numbers with the function x = cos t, which is done in Fig. 9-4. The agree-
ment is within the three significant figure accuracy of our calculation! We shall
see later that x = cos t is the exact mathematical solution of our equation of
motion, but it is an impressive illustration of the power of numerical analysis that
such an easy calculation should give such precise results.

9-7 Planetary motions

The above analysis is very nice for the motion of an oscillating spring, but
can we analyze the motion of a planet around the sun? Let us see whether we
can arrive at an approximation to an ellipse for the orbit. We shall suppose that
the sun is infinitely heavy, in the sense that we shall not include its motion. Suppose
a planet starts at a certain place and is moving with a certain velocity; it goes
around the sun in some curve, and we shall try to analyze, by Newton's IL.ws of
motion and his law of gravitation, what the curve is. How? At a given moment
it is at some position in space. If the radial distance from the sun to this position
is called r, then we know that there is a force directed inward which, according to
the law of gravity, is equal to a constant times the product of the sun's mass and
the planet's mass divided by the square of the distance. To analyze this further
we must find out what acceleration will be produced by this force. We shall need
the components of the acceleration along two directions, which we call x and y.
Thus if we specify the position of the planet at a given moment by giving x and y
(we shall suppose that z is always zero because there is no force in the z-direction
and, if there is no initial velocity vz, there will be nothing to make z other than
zero), the force is directed along the line joining the planet to the sun, as shown
in Fig. 9-5.

From this figure we see that the horizontal component of the force is related
to the complete force in the same manner as the horizontal distance x is to the
complete hypotenuse r, because the two triangles are similar. Also, if x is positive,



Newton's Laws of Dynamics

Fs is negative. That is, F, /!F1 = x/r, or Fs = HF,x/r = GMnalr'. Now
we use the dynamical law to find that this force component is equal to the mass of
the planet times the rate of change of its velocity in the x-direction. Thus we find
the following laws:

In(drzldt) = GMnix1r3,
in(dryldt) = GMtny1r3,

r= V x2 -I- y2 .

(9.17)

This, then, is the set of equations we must solve. Again, in order to simplify the
numerical work, we shall suppose that the unit of time, or the mass of the sun, has
been so adjusted (or luck is with us) that GM ---a. 1. For our specific example we
shall suppose that the initial position of the planet is at x = 0.500 and y = 0.000,
and that the velocity is all in the y-direction at the start, and is of magnitude
1.6300. Now how do we make the calculation? We again make a table with
columns for the time, the x-position, the x-velocity rx, and the x-acceieration az;
then, separated by a double line, three columns for position, velocity, and accelera-
tion in the y-direction. In order to get the accelerations we are going to need
Eq. (9.17); it tells us that the acceleration in the x-direction is .0.3, and the
acceleration in the y-direction is y /r3, and that r is the square root of x2 + y2.
Thus, given x and y, we must do a little calculating on the side, taking the square
root of the sum of the squarer. to find r and then, to get ready to calculate the two
accelerations, it is useful also to evaluate 1/r3. This work can be done rather
easily by using a table of squares, cubes, and reciprocals: then we need only
multiply x by 1/r3, which we do on a slide rule.

t=10--,.

t '''' I 3 -,

y

- (1.0,5

05

t=.2o-,. t.to Fig. 9-6. The calculated motion of a111,,,J1I1 I t Ili, ii t around the sun.-10 -05 SUN 05 li
planet

Our calculation thus proceeds by the following steps, using time intervals
E = 0.100: Initial values at 1 = 0:

From these we find:

x(0) = 0.500
rs(0) = 0.000

y(0) = 0.000

vu(0) = +1.630

r(0) = 0.500 l/r 3 (0) = 8.000
az = 4.000 a !I = 0.000
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Thus we may calculate the velocities u,(0.05) and vy(0.05):

rz(0.05) = 0.000 4.000 X 0.050 = 0.200;
ry(0.05) = 1.630 + 0.000 X 0.100 = 1.630.

Now our main calculations begin:

x(0.1) = 0.500 0.20 X 0.1 = 0.480

y(0.1) = 0.0 + 1.63 X 0.1 = Q.163

r = 0.4802 + 0.1632 = 0.507

1/r3 = 7.67
ax(0.1) = 0.480 X 7.67 = 3.68
ay(0.1) = 0.163 X 7.70 = 1.256

M0.15) = 0.200 3.68 X 0.1 = 0.568
r(0.15) = 1.630 1.26 X 0.1 = 1.505

x(0.2) = 0.480 0.568 X 0.1 = 0.423

y(0.2) = 0.163 -1- 1.50 X 0.1 = 0.313
etc.

In this way we obtain the values given in Table 9-2, and in 20 steps or so we have
chased the planet halfway around the sun! In Fig. 9-6 are plotted the x- and
y-coordinates given in Table 9-2. The dots represent the positions at the succession
of times a tenth of a unit apart; we see that at the start the planet moves rapidly
and at the end it moves slowly, and so the shape of the curve is determined. Thus
we see that we really do know how to calculate the motion of planets!

Now let us see how we can calculate the motion of Neptune, Jupiter, Uranus,
or any other planet. If we have a great many planets, and let the sun move too,
can we do the same thing? Of course we can. We calculate the force on a particular
planet, let us say planet number i, which has a position x y zi (i = I may repre-
sent the sun, i = 2 Mercury, i = 3 Venus, and so on). We must know the positions
of all the planets. The force acting on one is due to all the other bodies which
are located, let us say, at positions x yi, z,. Therefore the equations are

dv ixm = E
dt

dv,

dr;=
111 =

dt

Gtn,m,(xi x,)
r

N

E Ginztivy, n)
3

---1 ru
N Gtrtim,(zi zi)

,at ro

(9.18)
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Table 9-2
Solution of ditJdt = -x/r3, dv,/dt = -y/r3, r = V;F-1-y2.

Interval: e = 0.100
Orb't vy = 1 63 it. = 0 x = 0.5 y = 0 at t = 0

I x v, a, y v, a, r 1/r3

0.0 0.500 -4.00 0.000 0.00 0.500 8.000
-0.200 1.630

01 0.480 -368 0.163 -1.25 0.507 7.675
-0.568 1.505

0.2 0.423 -2.91 0.313 -2.15 0.526 6.873
-0.859 1.290

0.3 0.337 -1.96 0.442 -2.57 0.556 5.824
-1.055 1.033

0.4 0.232 -1.11 0.545 -2.62 0.592 4.81
-1.166 0.771

0.5- 0.115 -0.453 0.622 -2.45 0 633 3.942
1.211- 0.526 -

0.6 -0.006 +0.020 0.675 -2.20 0.675 3.252
-1.209 0.306

0.7 -0.127 +0.344 0.706 -1.91 0.717 2.712
-1.175 0.115

0.8 -0.245 +0.562 0.718 -1.64 0.758 2.296
-1.119 -0049

0.9 -0.357 +0.705 0.713 -1.41 0 797 1.975
-1.048 -0.190

1.0 -0.462 +0.796 0.694 -1.20 0.834 1.723
0968 -- 0.310

1.1 -0.559 0.663 -1.02 0.867 1.535+0.858
-0.882 -0.412

1.2 -0.647 +0.90 0.622 -0.86 0.897 1.385
-0.792 -0.499

1.3 -0.726 +0.92 0.572 -0.72 0.924 1.267
-0.700 -0.570

1.4 -0.796 +0.93 0.515 -0.60 0.948 1.173
-0.607 -0.630

1.5 -0.857 +0 94 0.452 -0.50 0.969 1.099-- 0.513 0.680 --
-0.908

-

+0.95 0.384 -0.40 0.9861.6 1.043.
-0.418 -0.720

1.7 -0.950 +0.95 0.312 -0.31 1.000 1.000
-0.323 -0.751

1.8 -0.982 +0.95 0.237 -0.23 1.010 0.970
-0.228 -0.773

1.9 -1.005 +0.95 0.160 -0.15 1.018 0.948
-0.113 -0.778

2.0 -1.018 +0.96 0.081 -0.08 1.021 0.939- 0.037-
-1.022 +0.95 0.001

0.796
000 1.022 0.9362.1

+0 058 -0.796
2.2 -1.016 +0.96 -0.079 +0.07 1.019 0.945

-0.789
2.3

Crossed x-axis at 2.101 sec, period = 4.20 sec.
tt = 0 at 2.1386 sec.

0. 500
Cross x at 1.022, .. semimajor axis

1.022 +
= 0.761.

2
vy = 0.796.

Predicted time x(0.761)3/2 = 7r(0.663) = 2.082.
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Further, we define r as the distance between the two planets i and j; this is equal to

r = VC.X, .x.,)2 + (y, y.,)2 + (z, z,)2. (9.19)

Also, E means a sum over all values of jall other bodiesexcept, of course,
for j = i. Thus all we have to do is to make more columns, lots more columns.
We need nine columns for the motions of Jupiter, nine for the motions of Saturn,
and so on. Then when we have all initial positions and velocities we can calculate
all the accelerations from Eq. (9.18) by first calculating all the distances, using
Eq. (9.19). Hov. long will it take to do it? If you do it at home, it will take a
very long time! But in modern times we have machines which do arithmetic very
rapidly; a very good computing machine may take 1 microsecond, that is, a
millionth of a second, to do an addition. To do a multiplication takes longer,
say 10 microseconds. It may be that in one cycle of calculation, depending on
the problem, we may have 30 multiplications, or something like that, so one cycle
will take 300 microseconds. That means that we can do 3000 cycles of computation
per second. In order to get an accuracy, of, say, one part in a billion, we would
need 4 X 105 cycles to correspond to one revolution of a planet around the sun.
That corresponds to a computation time of 130 seconds or about two minutes.
Thus it take only two minutes to follow Jupiter around the sun, with all the
perturbations of all the planets correct to one part in a billion, by this method!
(It turns out that the error varies about as the square of the interval E. If we make
the interval a thousand times smaller, it is a million times more accurate. So, let
us make the interval 10,000 times smaller.)

So, as we said, we began this chapter not knowing how to calculate even the
motion of a mass on a spring. Now, armed with the tremendous power of Newton's
laws, we can not only calculate such simple motions but also, given only a machine
to handle the arithmetic, even the tremendously complex motions of the planets,
to as high a degree of precision as we wish!
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An experimental study of a complex motion, that of a

golf club, is outlined. If you do not have a slow-motion
movie camera, similar measurements can be made ,,sing
the stroboscopic picture.

13 The Dynamics of a Golf Club

C. L. Stong

1964
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With the aid of a slow-motion
movie (anima and a co-Opera-
tive friend any golf player can

easily explore the dynamics of his club
head dining the split second of the drive
that sepmates the sheep horn the goats
of golfdom. The procedure, as applied
by Louis A. Graham, a consulting en-
gineer m Naples, Ha , analyzes the travel
of the club head throughout the swing,
including its velocity and acceleration
at the critical moment of impactfactors
that determine whether a squarely struck
ball will meld), topple off the tee or go
a history-making 443 yards to match the
performance of E. C. Bliss in August,
1913.

"The procedure is essentially simple,"
suites Graham, "but the reliability of
the results will 'effect the care with
which certain measurements are made.
I pick a sunny day for the experiment
and, basing arrived at the golf course
with my co-operative friend and acces-
sories, tee my ball. Then I place a tee
m.0 ker pi esely four feet in front of
the ball and another four feet behind it
to make a line that points toward the
(fist green My blend stations the tripod-
mounted camera for a medium close -up
shot on a line that intersects the ball at
light angles to the tee markers. I addles-,
the ball, facing the camera. My friend
photographs the complete drive from
add' ess to follow-thiough at the rate of
48 flames per second. The known dis-
tanc between the tee maikrs and their
position in relation to the club head
scales the pictures with respect to dis-
tance lime exposure ratethe number of
flames per secondof the camera pro-
vides the time dimension. (If the expo-
sine late is not known accurately, it can
be calibrated by photographing a phono-
graph turntable !milked with a chalk line

and tinning at 45 or 78 revolutions pm
minute.)

The film is developed and analyzed.
One can use either a film-editing device
that projects an enlarged image of each
Elaine or a set of enlarged prints of each
frame, mounted sei hilly and numbered
fin identification.

The next step is to plot the position
of the club head dining the course of the
swing. Since a point in a plane is detel-
mined by its distance limn two other
known points, the position of the club
head can be plotted in relation to that of
the two tee markers [see illustration be-
low] First, I (haw a base line near the
bottom of a sheet of graph paper ruled
with mectangular co-mdmates and on it
locate three equally spaced points: the
tee maker P, the ball (0) and the
tee maikei Q. I usually space these

20 3E

16

41

10

40

39

56

points foul inches apart. thus establish-
ing a scale of 12 inches of club head
travel pct inch of graph paper.

"Ile location of the club head (C)
ith respect to that of the tee milkers

can be transferred to the giaph by one
of three methods. Proportional dividers
me handy for transferring the scaled
distance from P to C and from C to Q.
Alternatively, the angles CPQ and CQP
can be measured with a protractor and
leconstructed on the graph, point C be-
ing located at the intersection of lines
piojectcd bon] P and Q. If no protractor
is at hand, the vertical and horizontal
distances between C, P and Q can be
measured with a square and midi and
similarly tiansfeired to the graph.

"Plot enough points to establish a rea-
sonably smooth track, skipping sex eral
frames dining slow poi dons of the

53
5+ 52

51
26

30 -33
37

dub head
position

43

0
Graph of successive dub head positions

frame
numbers

45

4+

50

46

46

47
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(1,

cssing. The istilting graph tti it <ose
not estienils accurate The plane in
oluch the club head sss fogs, tot csanip:.
is inclined to the plane of the fihu flu
tim k plotted how the iniag,e theicht.
(1111(1s f10111 tilt' tune CM 11151 II

`Vel OF the club head, but the emit is not
large and can be !ginned the satin
token. the tiasl of the club head ft in
point to point is subsequi nt I% inasined
along stiaight lines, n limits the c hit
head .(twills follons caned path
'Faun intioducd In this SI/111« ( be
11111111111/Cd 1)\ the (much(
NI) (.1111(.1.1. out 15 1111111-

ed (Oa Ina \jinni!' spied Of IS b,uues pis!
second, a tats that teetads the emit
adquatel fin the oluectii es of this es-
pet twilit

"The total distan« this vied bs the
club head and its %elm its and au.eleta.
tom ale dei is ed fioni a sectuul set of
giaplis impaled (loin the graph of club
head position. On a second sheet of
graph impel oiled is ttli let t,Digulu to
iodinates ills oh, the abscissa into a wiles
of 111)1h/1111 III( remvlits equal to the total
monlwi of ft tunes oei opted b) the sss ills
and note the con espooding time Inlet-
\ als in seconds as v. ell as the f ante num-
bets 'I lie (pi <Mime %%ill cans ton st ales.
club head ti,tl in feet and club liml
speed in imhs per hour. The scales of the
ordinate should pti n tile fit .t total club
head h: % el of .36 feet and a mammon'
velocity of about SO miles pc' limn
r:, lilts of comnient pi ()pot 6on result
%%ben the length of the intimate topic.
sewing 36 feet equals the length woe-
:witting one second on the abscissa The
masininin (mity of SO miles pm hoe;
need not occupy mole than hall of the
ordinate scale, .1% SIM II to the ai
pain ing gtnplt [upper illustration on
opposite page).

"I)ata ft,' plotting club head tra% el
against time are (leri%ed b) ineasin ntg
the graph of club head pasnion NU1 .
it table of duet, columns, fit fiame num-
bet, nine and distance. Beginning n iih
the point on the graph of chili bead
ti as el that shoos the head add: essing the
bail, scale the distance to the nest pima
and conso t to equivalent feet it tefei-
ring the measmement to the base line
that Includes r, () and Q. Wayne and
tabulate the tem:luting positum points
in the same way. \\len the table is «um
plete, add the distaii« inctemnts
gressively, plot distance against time and
drag a smooth cm v Quouglh the points.

"The speed of the club head at ain
point is found from this graph b the
familiar graphical method of slopes, To
find the speed of the club head at about

10 16

26 31

39 40

43 44

46 48

52

Selected frames /rntn slmmotton film ni n pill suing

56



the point of impact (ft ante No 3).
draw a tangent ISM of arintialy length
timing!' K The sides MN and IN .ne
found by refilling to the scale to equal
11.2 feet and I I second iespectn ely.

Tlw speed of the club head at tins instant
is equal to the mho I1 2, I1, out 102
feet pm second flia result can be
expressed m icicles pen bout by multi-
ply mg it by the mutater of seconds
per limn and di% tiling the pi oduct by
the number of feet pm nude: 102
3,600/5,280 70 miles pin hom. Re-
peat the pi ocedure for each of the
frames, tabulate the results. plot speed
vet sus time and draw a smooth tune
tinough the points

"Club head accelm anon can be
graphed in the same way 01 mei ely com-
puted limn the pith of club head speed
at frames of pal ticulat into est. such as
the fame showing the moment of Im-
pact. Poi example, to determine the ac-
mita anon of the club head depicted by
flame No .38, th.m ,t tangent to the
graph at this point. Then, at some tubt-
ti y point . those, sa) ,tt the point
esponding to a velocity of 56 miles pet

how, di op a perpendicular MA' from the
tangent At anodic! arbitimy point be-
low, say at the point OM espondmg to a
velocity of 12 miles pet tom, th.m
hue 1,N p.nallel to the abscissa and in-
tersecting both the tangent and MN%
Inspection of the abscissa discloses that
the length EN is analogous to a time
inteival of 1 second. Accelmation ms

defined as the mate of change of %elocity
and is equal to the dillei CHU` between
the filial velocity and 3111l1.11 Velocity
divided by the time into cal bets% een
the two, In this esample the velocity
difference is .56 miles pm tom minus
12 miles per how, 01, expressed in feet
pm second. (56 12) X 5.280/3.600
= 64 feet per second lice acceleration
is 64/.1 640 feet per second pet sec-
ond The accelmatum of gm vity (g)
amounts to 32 feet pet second pet sec-
ond. The acceleration of the club head ,tt
haute No 38 in toms of g is accold-
ingly 640/32, in 20 g!

"Having Clp formed this tamy-after-
noon pinion of the pi ocedute, what
reward awaits the duffel? tom one thing,
he 011 see at a glance why his di Ives do
not match those of a mofessional
The graphs discussed so far show the
pet formance of golf professional Dick
Bull using au non. His swing ft om ad-
dress to follow-thlough lequited 1.17
seconds. The club head tra eled 31 feet.
His backswing occupied .6 second. He
paused at the top about .1 second. Mole
inteiesting than these figures, In my

The Dynamics of a Golf Club

opinion. ale those of the club head speed
and acceleration Bull aim% ed. the in-
crease in club head speed dining the
.1 second beim e impact from 15 miles
per hour to an ainav mg 70 miles pet
limn, representing an accelei atiou of
shghtly over 20 g. Graphs of Bull's per-
formance with a din el, although diffel -
eta in many respects from those of his
11011S, S110%% exactly the same figure fin

.is

speed, 70 miles per hour, and an accel-
eration of 22 g. a remarkably uniform
performance. Similar analysis of the pet-
it/mance of a fairly good amateur using
a dIR el shows pi eeisely half the s (Am-
ity of Bull's club, 35 miles per lion, and
an acceleration at impact of only ses en g
(Nee lower illustratton below].

"Although these methods of anal zing
motion are loutme in engineering mr-

50 .75

time in seconds

(impact)

(pause L
at top)

AIA

1.25

(acceleration 20

cD

or

12 to 24 30

frames
36 42 46 56 64

Speed and acreleratton graph for a professtonal's stung

.50 .75

ti me in seconds
.1.25

(speed 35 mph.)

(acceleration 7 a
4

12 18 24 30

frames
36 42

Similar graph for on arnateur's performance

46 56 6*
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Athletic events involve measurements of distance and
time, and so bring in the same error considerations that
one also meets in the laboratory.

14 Bad Physics in Athletic Measurements

P. Kirkpatrick

1944

THE, physics teacher has been accustomed to
find in athletic activities excellent problems

involving velocities, accelerations, projectiles and
impacts. He has at the same time overlooked a
rich source of illustrations of fictitious precision
and bad metrology. When the student is told
that the height of a tree should not be expressed
as 144.632 ft if the length of its shadow has been
measured only to the nearest foot, the student
may see the point at once and yet ask, "What
difference does it make?" But when shown that
common procedures in measuring the achieve-
ments of a discus thrower could easily award a
world's record to the wrong man, the student
agrees that good technic in measurement is
something more than an academic ideal. The
present discussion' has been prepared partly to
give the physics teacher something to talk about,
but also to start a chain of publicity which may
ultimately make athletic administrators better
physicists and so make their awards more just.

If physicists were given charge of the measure-
ments of sport, one may feel sure that they
would frown upon the practice of announcing the

1 Some of the material in this article appeared in a paper
by the author in Scientific American, April 1937, and is
incorporated here by permission of the editors.

speed of a racing automobile in six or seven
digitssee, for example, the World Almanac for
any yearwhen neither the iength of the course
nor the elapsed time is known one-tenth so
precisely. They could and would point out such
inconsistencies as that observed in some of the
events of the 1932 Olympic games when races
were electrically and photographically timed to
0.01 sec, but with the starting gun fired from
such a position that its report could not reach
the cars of the waiting runners until perhaps
0.03 to 0.04 sec after the official start of the race.
In this case, electric timing was used only as an
unofficial or semi-official supplement to 0.1-sec
hand timing; but it is easy to see that a sys-
tematic error of a few hundredths of a second will
frequently cause stopwatch timers to catch the
wrong tenth.

Scientific counsel on the field would immedi-
ately advise judges of the high jump and pole
vault to measure heights from the point of take-
off instead of from an irrelevant point directly
below the bar which should be at the same level
but sometimes isn't. Physicists would suggest
equipping field judges with surveying instru-
ments for determining after each throw, not only
how far the weight traveled but also the relative
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elevation of the landing point and the throwing
circle. Certainly it is meaningless if not deceptive
to record "eight throws to a small fraction of an
inch when surface irregularities may be falsifying
by inches the true merit of the performance.

In shot-putting, for example, a measured
length will be in error by practically the same
amount as the discrepancy between initial and
final elevations, since the flight of the shot at its
terminus is inclined at about 45° to the hori-
zontal. For the discus the effect is some three
times as serious because of the flatter trajectory
employed with this missile, while broad jumpers
under usual conditions must be prepared to give
or take as much as 0.5 ft, according to the luck
of the pit. Meanwhile, the achievements in these
events go down in the books with the last eighth
or even the last sixteenth of an inch recorded.

At the 1932 Olympic Games an effective device
was used to grade the broad-jumping pit to the
level of the take-off board before each leap, but
the practice has not become general. Athletic
regulations, indeed, recognize the desirability of
proper leveling in nearly all the field events, but
in actual usage not enough is done about it.
Since sprinters are not credited with records
achieved when blown along before the wind,
there is no obvious reason why weight hurlers
should be permitted to throw things down hill.

The rule books make no specification as to the
hardness of the surface upon which weights shall
be thrown, but this property has a significant
effect upon the measured ranges of the shot and
hammer,, since it is prescribed that measurement
shall be made to the near side of the impression
produced by the landing weight. In a soft surface
this impression may be enlarged in the backward
direction enough to diminish the throw by several
times the ostensible precision of the measurement.

A physicist would never check the identity of
three or four iron balls as to mass by the aid of
grocers' scales or the equivalent and then pretend
that there was any significance in the fact that
one of them was thrown a quarter of an inch
farther than the others. In measuring the length
of a javelin throw, no physicist who wanted to
be right to I in. would be content to establish his
perpendicular from the point of fall to the
scratchline by a process of guesswork, but this

132

is the way it is always done by field judges, even
in the best competition.

Among the numerous errors afflicting measure-
ments in the field sports, there is none which is
more systematically committed, or which could
be more easily rectified, than that pertaining to
the variation of the force of gravity. The range
of a projecLile dispatched at any particular angls,
of elevation and with a given initial speed is a
simple function of g. Only in case the end of the
trajectory is at the same level as its beginning
does this function become an inverse proportion-
ality; but in any case the relationship is readily
expressed, and no physicist will doubt that a
given heave of the shot will yield a longer put in
equatorial latitudes than it would in zones where
the gravitational force is stronger. Before saying
that the 55-ft put achieved by A in Mexico City
is a better performance than one of 54 ft, 11 in.
which B accomplished in Boston, we should
surely inquire about the values of g which the
respective athletes were up against, but it is
never done. As a matter of record, the value of g
in Boston exceeds that in Mexico City by I per-
cent, so the shorter put was really the better.
To ignore the handicap of a larger value of g is
like measuring the throw with a stretched tape.
The latter practice would never be countenanced
under AM: or Olympic regulations, but the
former is standard procedure.

Rendering justice to an athlete who has had to
compete against a high value of g involves ques-
tions that are not simple. It will be agreed that
he is entitled to some compensation and that in
comparing two throws made under conditions
similar except as to g, the proper procedure would
be to compare not the actual range's achieved,
but the ranges which would have been achieved
had some "standard" value of gsay 980 cm/
seeprevailed in both cases. The calculation of
exactly what would have happened is probably
impossible to physics. Although it is a simple
matter to discuss the behavior of the implement
after it leaves the thrower's hand and to state
how this behavior depends upon g, the depend-
ence of the initial velocity of projection upon g
depends upon the thrower's form and upon char-
acteristics of body mechanics to which but little
attention has so far been devoted.



The work done by the thrower bestows upon
the projectile both potential and kinetic energy.
In a strong gravitational field, the imparted
potential energy is large and one must therefore
suppose the kinetic energy to be reduced, since
the thrower's propelling energy must be dis-
tributed to both. We have no proof, however,
that the total useful work is constant despite
variation of g, nor do we know the manner of its
inconstancy, if any. The muscular catapult is not
a spring, subject to 'Tooke's law, but a far more
complicated system with many unknown charac-
teristics. The maximum external work which one
may do in a single energetic shove by arms, legs
or both obviously depends partly upon the re-
sisting force encountered. Only a little outside
work can be clone in putting a ping-pong ball
because the maximum possible acceleration,
limited by the masses and other characteristics
of the bodily mechanism itself, is too slight to
call out substantial inertial forces in so small a
mass. The resisting force encountered when a
massive body is pushed in a direction that has an
upward component, as in shot-putting, does of
course depend upon g; and until we know from
experiment how external work in such an effort
varies with resisting force, we shall not be able
to treat the interior ballistics of the shot-putter
with anything approaching rigor.

Several alternative assumptions may be con-
sidered. If we suppose that the velocity of de-
livery, or "muzzle velocity," v, of the missile is
unaffected by variations of g, we have only the
external effect to deal with. Adopting the ap-
proximate range formula R =v2 /g (which neg-
lects the fact that the two ends of the trajectory
are at different levels and which assumes the
optimum angle of elevation) we find that the
increment of range dR resulting from an in-
crement dg is simply Rdg/g. On the more
plausible assumption that the total work done on
the projectile is independent of g, this total to
include both the potential and kinetic energies
imparted, one obtains as a correction formula,

dR= (1+ R,dg
(1)

R g

where h is the vertical lift which the projectile
gets while in the hand of the thrower. A third
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assumption, perhaps the most credible of all,
would hold constant and independent of g the
total work done upon the projectile and upon a
portion of the mass of the thrower's person. It is
not necessary to decide how much of the thrower's
mass goes into this latter term; it drops out and
we have again Eq. (1), provided only that the
work done on the thrower's body can be taken
into account by an addition to the mass of the
projectile.

These considerations show that a variation of g
affects the range in the same sense before and
after delivery, an increase in g reducing the
delivery velocity and also pulling the projectile
down more forcibly after its flight begins. They
indicate also that the latter effect is the more
important since, in Eq. (1), 1 >21z/R by a factor
of perhaps five in the shot-put and more in the
other weight-throwing events.

One concludes that the least which should be
done to make amends to a competitor striving
against a large value of g is to give him credit
for the range which his projectile would have
attained, for the same initial velocity, at a
location where g is "standard." This is not quite
justice, but it is a major step in the right direc-
tion. The competitor who has been favored by a
small value of g should of course have his achieve-
ment treated in the same way.

The corrections so calculated will not be
negligible magnitudes, as Fig. 1 shows. They arc
extremely small percentages of the real ranges,
but definitely exceed the ostensible probable
errors of measurement. It is not customary to
state probable errors explicitly in connection
with athletic measurements, but when a throw
is recorded as 57 ft, 1151- in., one naturally con-
cludes that the last thirty-second inch, if not
completely reliable, must have been regarded as
having some significance.

ROTATION OF THE EARTH

It is customary to take account of the effects
of terrestrial rotation when aiming long-range
guns, but athletes and administrators of sport
have given little or no attention to such effects
in relation to their projectiles. As a matter of
fact they should, for at low latitudes the range of
a discus or shot thrown in an eastward direction
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exceeds that of a westward throw by more than
the ostensible precision of such measurements.
The difference between the range of a projectile
thrown from the surface of the real earth and
the range of one thrown from a nonrotating earth
possessing the same local value of g is given by'

1702 sin 2a 46,1703
R4age= +

g 3g2

X sin a[4 cos2 a-13 cos X sin 11, (2)

where g is the ordinary acceleration due to
weight, Vo is the initial speed of the projectile,
a is the angle of elevation of initial motion
(measured upward from the horizontal in the
direction of projection), co(rad/sec) is the angular
speed of rotation of the earth, X is the geographic
latitude of the point of departure of the pro-
jectile, and 11 is the azimuth of the plane of the
trajectory, measured clockwise from thc. north
point.

A derivation of this equation (though not the
first) is given in reference 2, along with a dis-
cussion of its application to real cases. The
approximations accepted in the derivation are
such as might possibly be criticized where long-

2 P. Kirkpatrick, Am. J. Phys. 11, 303 (1943).
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FIG. 1. Graphs for normalizing
shot-put ranges to the common
value g =980 cm/sec2. Ranges
achieved where g = 980 cm/sec2
are not in need of adjustment,
but a range of 50 It (see inclined
line marked 50') achieved at
Glasgow, whereg = 981.6 cm/sec2,
is entitled to a premium of li in.
which should be added before
comparing the put with one
achieved elsewhere Distances
accomplished where g<980
cm/sec2 should be subjected to
the deductions ind:,. ted by
graphs in the third quadrant.

range guns are considered, but they introduce no
measurable errors into the treatment of athletic
projectiles.

The first term of the right-hand member of
Eq. (2) is the ordinary elementary range ex-
pression, and naturally it expresses almost the
whole of the actual range. The second term is a
small correction which is of positive sign for
eastbound projectiles (0 <il <180°) and negative
for westbound. The correction term, being pro-
portional to 1/03, increases with Vo at a greater
rate than does the range as a whole. Hence the
percentage increase or decrease of range, because
of earth rotation, varies in proportion to 170 or to
the square root of the range itself. Evidently this
effect is a maximum at the equator and zero at
the poles. Inspection of the role of a shows that
the correction term is a maximum for a 30°
angle of elevation and that it vanishes when the
angle of elevation is 60°.

By the appropriate numerical substitutions in
Eq. (2), one may show that a well-thrown discus
in tropic latitudes will go an inch farther east-
ward than wet tward. This is many times the
apparent precis.on of measurement for this event,
and records have changed hands on slimmt,'
margins. Significant effects of the same kind,
though of lesser magnitude,, appcir in the cases



of the javelin, hammer, shot and even the broad
jump, where the east-west differential exceeds the
commonly recorded sixteenth of an inch.

Figures 1 and 2 are types of correction charts
that might be used to normalize the performances
of weight throwers to a uniform value of g and
a common direction of projection. Figure 1 has
been prepared with the shot-put in mind, but is
not restricted to implements of any ix. tlar
mass. The inclined straight lines of this figu, are
graphs of dR versus dg from Eq. (1). Values of
the parameter R are indicated on the graphs.
The uniform value 100 cm has been adopted for
h, an arbitrary procedure but a harmless one in
view of the insensitivity of dR to h.

Figure 2, particularly applicable to the hammer
throw, furnishes means for equalizing the effect
of earth spin upon athletes competing with the
same implement but directing their throws vari-
ously as may be necessitated by the lay-out of
their respective fields. An angle of elevation of
45° has been assumed in the construction of these
curves, a somewhat restrictive procedure which
finds justification in the fact that no hammer
thrown at an angle significantly different from
45° is likely to achieve a range worth correcting.
These curves are plotted from Eq. (2); their
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application to particular cases is described in the
figure legend.

Upon noticing that some of these corrections
are quite small fractions of an inch, the reader
may ask whether the trouble is worth while.
This is a question that is i;, great need of
clarification and one that may not be answered
with positiveness until the concept of the prob-
able error of a measurement shall have become
established among the metrologists of sport.
Physicists will agree that to every measurement
worth conserving for the attention of Record
Committees should be attached a statement of
its probable error; without such a statement
there will always be the danger of proclaiming a
new record on the basis of a new performance
that is apparently, though not really, better than
the old. If the corrections of Fig. 2 exceed the
probable error to be claimed for a measurement,
then those corrections must be applied.

The aim of the American Athletic Union in
these matters is hard to determine. Watches
must be "examined," "regulated" and "tested"
by a reputable jeweler or watchmaker, but one
finds no definition of what constitutes an accept-
able job of regulation. Distances must be meas-
ured with "a steel tape." The Inspector of

FIG. 2. Curves for rendering throws in various directions comparable. The
assumed latitude is 30°, either north or south, and the assumed angle of elevation
is 45°. Since the range has a maximum for about this angle of elevation, the
curves also apply well to angles several degrees on either side. The curves show,
for example (circled point), that a missile thrown 200 ft in a direction 30° south
of cast should have yid. in. subtracted from its range in order to bring it into fair
comparison with unadjusted northward or southward throws or with throws in
any other direction which have been adjusted by reference to curves of this type
appropriately constructed for their respective latitudes.
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Implements must find the weights of the imple-
ments "correct." Such ideals of perfection are not
realistic, and the only alternative is to recognize
the existence of error and state its magnitude.
The minimum permissible weight for each im-
plement is prescribed both in pounds and in
kilograms by AAU rules, but in no instance are
the prescriptions exactly equivalent. A discus
thrower whose implement just satisfies the metric
specification will use a discus 4 gm, or i percent,
lighter than that of a competitor whose discus
just passes as judged by an inspector using per-
fect scales calibrated in British units. Those 4 gm
will give the former athlete two or three extra
inches of distance, an advantage that might be
decisive.

Similar comments could be made about the
rules of competition of the ICAAAA, where one
reads that the javelin throw is measured from
the point at which the point of the javelin first
strikes the ground. This is a mark that cannot in
general be determined to the often implied i in.
since it is obliterated by the subsequent penetra-
tion of the implement. Any javelin throw as
correctly measured by ICAAAA rules will show
a greater distance than if measured by AAU
rules, but few field judges know this nor could
they do much about it if they did. It is probable
that the rules do not say what was meant in
these cases. It is interesting that whereas the
hammer, shot and discus must be thrown upon a
level surface, there is no such requirement in the
case of the javelin.

Any serious attempt to put the measurements
of sport upon a scientific basis would be met with
vast inertia if not positive hostility. The training
of athletes is still very largely an art, and there
is no reason to suppose that those who are at
present practicing this art with success will be
predisposed to changes involving ways of thought
which, however commonplace in other disciplines,
are novel in athletic competition. One eminent
track and field coach, a producer of national,
Olympic and world champions, told the writer
that he had no interest in hairsplitting; that
leveling the ground accurately would be too
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much trouble; that common sense is better than
a wind gage for estimating the effect of -wind
conditions on sprinters; that a man can't put the
shot by theoryit's all in the feeling; that the
exact angle of elevation is unimportant as long
as he gets it in the groove.

A few years ago, the writer published some
criticisms along the lines of the present article
and sent reprints to each of the several hundred
National Committeemen of the AAU. One ac-
knowledgment was received, but no reactions to
the subject matter. In a sense, this indifference
was only just recompense for the writer's habit
of ignoring communications from nonphysicists
proposing novel theories of the atom, or other-
wise instructing the physicist as to the founda-
tions of his science.

There probably exists a general feeling that
part of the charm of sport resides in accident and
uncertainty. Any discussion of the possibility of
replaying the balls-and-strikes umpire in base-
ball b./ a robot will bring out the opinion that
the fallibilities of the umpire are part of the
entertainment for which the public pays. An
optical instrument for determining ft om the side-
lines whether or not a football has been ad-
vanced to first down was tried out in California
a few years ago. It was technically successful,
but a popular failure. The crowd was suspicious
of a measurement that it did not understand
and could not watch ; the players begrudged the
elimination of the breather which a chain meas-
urement affords; and even the linemen protested
the loss of their dramatic moment.

Though entertained by such attitudes, the
physicist will hardly be able to dismiss a feeling
that in any field of popular importance or in-
terest, it is improper to keep up the appearances
of accurate and comparable measurement with-
out doing what might be done to gain the reality.
In the matter of athletic records, he and very
few others know what to do about it.'

The author will be pleased to furnish reprints of this
article to readers who would find interest in bringing it to
the attention of athletic authorities.



Observation of nature by Renaissance artists and crafts-
men was a precursor of the new scientific outlook. This
in turn accelerated technology, leading to the industrial
revolution.

15 The Scientific Revolution

Herbert Butterfield

1960
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The pi ecedmg aitulc leases Homo
.sapiens in about 2300 B C., after
his invention of the city-state.

Our story does not really get under way
until some 4,000 years late; Thus, in
turning to the nest majoi revolution nt

man's imp,.ct on his ens nonment, we
seem to pass over almost all of recorded
human history. No revolution is ssithout
its antecedents, however. Although the

soentificindustrial age is a recent and
original achievement of Western man,
it has deep historical roots.

Western civilization is unique in its
historical-mindedness as well as in its
scientific character. Behind it on the one
hand are the ancient Joss, whose re
ligious literature was largely historical,
who preached a Cod of history, and
taught that history was moving to a

mighty end, not merely revols mg III
cycles of growth and decay On the
other hand are the ancient Greeks Their
htelature has provided a training m
logic, a stimulus to the exercise of the
critical faculties and a wonderful
grounding in mathematics and the phys-
ical sciences

In ssestern Europe civilization had a
comparatively late start. For thousands

ANATOMY, studied by Renaissance artists, was the first of the copy of Albrecht Dfirer's work De Symmetria Humonorum
sciences to he placed on a modern footing. This drawing is from a Corporum in the Metropolitan Museum of Art in New York.
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of years the lands at the eastern end of
the Mediterranean had held the leader-
ship in that whole section of the globe.
It was in the \Vest, furthermore, that the
Roman Empire really collapsed, and was
overrun by "barbarian invaders." Here
much of the ancient culture was lost, and
society reverted to comparatively primi-
tive forms. In the meantime a high By-
zantine civilization had its center in Con-
stantinople, and a brilliant Arabian one
in Baghdad. It would be interesting to
know why Western man, though he
started late, soon proved himself to be
so much more dynamic than the peoples
farther to the east.

In the formative period of a civiliza-
tion religion plays a more important part
than we today can easily understand.
After the fall of the Roman Empire the
comparatively primitive peoples in much
of Europe were Christianized by con-
quest or through royal command; in the
beginning it was a ease of pagans mere-
ly changing the names of their gods But
in the succeeding centuries of the Mid-
dle Ages the Church deepened spiritual
life and moral earnestness. It became the
great educator, recovering ancient schol-
arship and acting as the patron of the
arts By the 13th century there had de-
veloped a lofty culture, very much
under the presidency of religion, but a
religion that nourished the inner life,
stimulated heart-searchings and exam-
inations of conscience and set an eternal
value upon each individual soul. The
Western tradition acquired a high doc-
trine of personality.

By the year 1500. when the Renais-
sance was at its height, the West had
begun to take the command of world
history. The expansion of Islam had been
contained. The terrible Asian hordes,
culminating in the Mongols and the
Turks, that had overrun the eastern
Mediterranean lands had been stopped
in central Europe. One of the reasons
first for survival and then for progress in
the \Vest was its consolidation into some-
thing like nation-states, a form of polity
more firm and more closely knit than the
sprawling Asiatic empires.

Vet the Renaissance belongs perhaps
1 to the old (that is, the medieval)

world rather than to the new, it was
still greatly preoccupied with the re-
covery of the lost learning of ancient
Greece and Rome. Its primary interest
was not in scientific studies, but now,
after something like a thousand years
of effort, the West had recaptured virtu-
ally all it ever was to recover of ancient
Greek scholarship and science. Only
after this stage had been reached could
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the really, original developments in the
study of the physical universe begin.
The Western mind was certainly becom-
ing less other-worldly. In the later Mid-
dle Ages there was much thought about
the nature of man as well as about the
nature of God, so that a form of Christian
humanism had already been develop-
ing. The Renaissance was essentially
humanistic, stressing man as the image
of God rather than as the doomed mine!,
and It installed in western Europe the

GOTHIC CLOCK, dating from the early
16th century. ear photographed at the
Smithsonian Institution. Stone at bottom
is the driving %eight; arm at top is pan
of escapement. Clock%orks %ere among
earliest examples of wellordered machines.

foi in of classical education that etas to
ndine for «mtui les. The philosophy of
the time dwelt much on the dignity of
man Om modem Weston values there-
fore have deep Instal ic roots.

And the men of the Renaissance were
still looking backward, knowing that the
peak of en ihration had been leached
in remote anliquitymd then lost It
was easy for them to see the natural
process of history as a process of decline

Signs of something more modem had
begun to appear, but they belong chwIlx
to the realm of action rather than to
that of thought Theories about the um-
vel se (about the mm ements of the plan-
ets, for example) had still to be taken
over bodily from the peat teaches of
the ancient %%mid. On the mho hand, in
action Western man ryas already ploving
remarkably face and adventurous: in his
voyages of discovery. In the develop-
ment of mining and metallurgy, and in
the creatne walk of the Renaissance to L-
ists. Under these conditions scientific
thong} t might make little progress, but
technology had been able to advance.
And perhaps it was the artist rather than
the wrier of books who, at the Renais-
sane, was the O'er:111SW of the modem
scientist.

The artists had emancipated them-
selves limn clerical influence to a great
degree. The Florentine painters, seek-
ing the faithful reproduction of nature,
sharpened observation and pi cpmed the
way for science. The first of the MOH:CS
to be plat 'd on a modern footingthat of
anatomyw as one w Inch the artists cul-
tivated and xi, hich %Vag governed by di-
rect observation. It win the al tists who
even set up the cry that one must not be
satisfied t..) team from the ancients or to
take everything horn books, one most
examine patine for oneself. The artists
were often the engineers, the designers
of fortifications, the inventors of gadgets.
they were nem el to the artisan than
were the scholars, and their studios often
had the features of a laboratory or work-
shop. It is not snrprismg to find among
them Leonardo da Vinoa pwrinsor of
modern science. but only a precursor, iu
spite of his brilliance. because the mod-
ern scientific method had not yet
emerged.

Recoils show that m the 15th comity
a Byzantine scholai drew the attention
of his fellow-countrymen to the techno-
logical superiority of the West. He men
tinned progress m machine saws, ship-
building. textile and glass manufactine
and the production of cast iron. Three
other items should he added to the list:
the compass, gunpowder and the print-
ing press. Although they might not have



originated in Christendom, the Lad not
been handed down from classical antiq-
uity. They came to be the first concrete
evidence generally adduced to show that
the moderns might even excel the an-
cients. Before 1500, artillery had assisted
the consolidation of gin ernment on
something like the scale of the nation-
state. Punting was to speed up intellectu-
al communication, making possible the
wider spread of a more advanced kind
of education and facilitating the rise of
a lay intelligentsia

1 n setting the stage for mode, n develop-
1 meats the economic situation is of
fundamental importance By this time a
high degree of financial organization had
been attained The countryside might
look much as it had done for a thousand
years, but the Renaissance flourished
primarily in the city-states of Italy, the
Netherlands and southern Germany,
where commerce and industry had made
great advances The forms of economic
life were calculated to bring out indi-
vidual enterprise; and in the cities the
influence of priests declined the lay
intelligentsia now took the lead. There
had existed greater cities and eve» an
essentially urban civilization in ancient
times. What was new was the form of
the economic life, which, by the oppor-
tunities it gave to countless individuals,
possessed dynamic potentialities.

It was a Western world already
steeped m humanism that entered upon
a great scientific and technological de-
velopment. But if Western man decided
now to take a hand in shaping his own
destiny, he did it, as on so many other
occasions, only because he had been
goaded by problems that had reduced
him to desperation. The decisive prob-
lems were not material ones, however.
They were baffling riddles presented to
the intellect.

The authority of ancient scholarship
was shaken 'when it came to be realized
that the great Greek physician Galen
had heen wrong in some of his observa-
tions. primarily in those on the heal t.
In the 16th century successive discover-
ies about the heal t and the blood vessels
were made in Padua, culminating a little
later in William Harvey's demonstration
m England of the circulation of the
blood. The whole subject was now set on
a right footing, so that a flood of huffier
discoveries was bound to follow very
quickly. Harvey's work was of the
greatest importance, moreovei, oecause
it provided a pattern of what could be
achieved by obsei vation and methodical
experiment.

The older kind of science came to
shipwreck, however, over two problems
connected '%ith motion Aristotle, hat mg
m nand a horse dray% mg a cart, had
imagined that an object could not be kept
moving unless something %% as pulling m
pushing it all the time On this new it
was difficult to see why projectiles stated
in motion after they had become sepa-
rated flom the original propulsive force.
It was conjectured that a flying arrow
must be pushed along by the rush of an
that its previous motion had created, but
this theory had been ,ecoginted to be
unsatisfactory. In tie 16th century,
when artillery had become familial, the
student of motion naturally tended to
think of the projectile first of all. Great
minds had been defeated by this limb-
lem for centuries before Galileo altered
the whole approach and saw motion as
something that continue.1 until some-
thing intervened to check it

A great astronomical problem still re-
mained, and Copernicus did not solve
It alone. Accepting the recognized data,
he had shown chiefly that the neatest
explanation of the old facts was the
hypothesis of a rotating earth Toward
the end of the century new appearances
in the sky showed that the traditional
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ash onomy was obsolete. They' demon-
strated that the planets, for example. in-
stead of being fixed to crystalline sphere%
that kept them in their proper courses,
must be floating in empty space Melt'
was now no doubt that comets belonged
to the upper 1 egions of the sky and cut a
path through what had been regarded as
the hard, though transparent, spheres. It
was now not easy to see how the planets
v ere held on a regular path Those who
follmed Copernicus 111 the view that
the earth itself moved had to face the
fact that the science of ply sues, as it then
existed, could not possibly explain ho
the motion was pi oduced.

In the face of such problems it began
to be realized that science as a whole
needed renovation. Even in the 16th
century people %%ere beginning to ex-
ainme the question of method. In this
case a great historic change was willed
in advance and consciously attempted.
Alen called for a scientific revolution be-
fore the change had occurred, and be
fore they knew exactly what the situa-
tion demanded Francis Bacon, who
tried to establish the basis fox a new
scientific method, even predicted the
magnitude of its possible consequences
the power that man was going to ac-

COMPAx., ROSE ix reproduced from The Art of Navigation. publivIted in France in 1665.
The invention of the rompa.t... %Welt %3:. not an achievement of cl,p.tocal antiquity. en.
i °waged the men of the Remsivsance to belime that they might come to etred the ancient..
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MOVABLE TYPE CAST FROM MATRICES was contribution of Johann Gutenberg to
art of printing. Sample of his type, enlarged about four diameters, is from his Bible, printed
about 1456. Bible in which this type appears is in Pierpom Morgan Library in New York

quire over 'Wine. It was realized, fun- of mathematics in the transformation of
thermore, that the authority of the science.
ancient world, as well as that of the Mid-
dle Ages, was in question. The French
philosopher Rene Descartes insisted
that thinking should be started over
again on a clean slate.

The impulse for a scientific revolution
came from the pressure of high intel-

lectual needs, but the tools of civilization
helped to give the ne movement its di-
rection In the later N.Iddle Ages men
had become MOW conscious of the ex-
istence of the machine, particularly
through mechanical clocks. This may
have prepared them to change the Im-
molation of their problems. Instead of
seeking the "essence" of a thing, they
were now more prep' ed to ask, even of
nature, simply: Flow does it work?

The student of the physical universe,
like the artists below him, became more
fannhal with the workshop, leruning
manipulation from the artisan. Ile in-
terested himself in problems of the prac-
tical world: artillery, pumps, the deter-
mination of longitude. Expel nuentation
had long existed, but it now became
mole organized and methodical as the
investigator became more conscious of
what he was trying to do. In the 17th
century, mm covet, scientific instunnents
such as the telescope and the microscope
came into use.

But theory mattered too. If Galileo
corrected a fallacious view of motion, it
was because his mind was able to change
the formulation of the whole ploblem. At
least as important as his experimentation
was his mathematical attack on the prob-
lem, which illustrated the potential role

Another momentous factor in des el-
oping the new outlook oas the res
of .in ancient c nos that matter is com-
posed of infindvsimally small paincles.
This view cc as now at last pi esented in a
form that seemed consistent ccith Chris-
tianity (because the combinations of the
particles %Odell produced the sailed
world of physical things woe no longer
regarded as the lucre product of chance),
so that the atomic them), was able to ac-
quire a wide currency. It led to a better
appreciation of the intricate texture of
matter, and It proved to be the source of
innumerable new hypotheses. The the-
ory seemed to open the way to a purely
mechanical explanation of the universe,
which should account for everything by
the shape, the combination and the mo-
tion of the particles. Long before such
an explanation had been achieved. men
were aspiring to it Even 'Aprils men

. were al gumg that Cm cation itself would
have been impel feet if God had not
made a universe that was a perfectly
regular machine.

NEW COSMOLOGY OF COPERNICUS placed a fixed sun (Sol) at the center of the
universe. The sphere of the fixed stars (1,) and the spheres of the six know n planets re
volved around the sun. Circle inscribed around the earth (Terra) is the lunar sphere. This
woodcut appears in Copernicus's On the Revolution of the Celestial Spheres (1513).



VW CB Ill/MIMI that had begun its
estss said shift in the later Middle

Ages vi as mos mg north and west. At the
Renaissance Italy still held the primacy,
but vi ith the Reformation the balance
shifted more definitely to the not th. By
the closing decades of the 17th century
economic, technological and scientific
progress centered on the English Chan-
nel The leadership now belonged to
England, France and the Netherlands,
the countries that had been gal vanued
by Or:. conunerce arising from the oven -
seas discoveries of the 15th century. And
the pace vv as quickening. Technique was
developing apace, economic life was ex-
panding and society vv as moving for-
ward generally in an exhilarating way.

The solution of the main problems of
motion, particularly the motion of the
earth and the heavenly bodies, and the
establishment of a new notion of scien-
tific method, took a hundred years of
effort after the crisis in the later decades
of the 16th century. A great number of
thinkers settled single points, or made
attempts that misfired. In the period
after 1660 a host of workers in Par is and
London were making science fashion-
able and bringing the scientific revolu-
tion to its culmination Isaac Newton's
Principia in 1687 synthesized the results
of what can now be seen to have been a
century of collaborative effort, and
serves to signalize a new era. Newton
crowned the long endeavor to see the
heavenly bodies as parts of a wonderful
piece of clockwork.

The achievements of ancient Greece
in the field of science had now been un-
mistakably transcended and outmoded.
The authority of both the ancient and
the medieval worlds was overthrown,
and Western man was fully persuaded
that he must rely on his own resources
in the future. Religion had come to a low
ebb after generations of fanaticism,
persecution and war; now it was in a
weak position for meeting the challenge
of the new thought. The end of the 18th
century sees in any case the decisive mo-
ment in the secularization of European
society and culture. The apostles of the
new movement had long been claiming
that there was a scientific method which
could be adapted to all rearms of inquiry,
including human studieshistory, poli-
tics and comparative religion, for ex-
ample. The foundations of what has
been called the age of reason had now
been laid.

At the same time society itself was
changing rapidly, and man could see it
changing, see It as no longer static but
dynamic. Thew began to emerge a dif-
ferent picture of the process of things in

The Scientific

0\

TRAJECTORIES OF PROJECTILES were calculated with aid of protractor device (right)
invented by Niccolb Tartaglia, an It:Ilan engineer and mathematician who died in 1577.
Ballistics problems drew attention to the inadequacy of the Aristotelian ideal about motion.

time, a picture of history as the em-
bodiment of progress rather than of de-
cline The future now appeared to offer
opening vistas and widening horizons.
Man was coming to feel more capable
of taking charge mei his own destiny.

It was not mmely man's tools, and not
merely natural science, that had carried
the story forward. The whole complex
condition of society was involved, and
movement was taking place on a wide
front. The age of Newton sees the foun-
dation of the Bank of England and the
national debt, as well as the develop-
ment of speculation that was to cuhni-

nate in the South Sea Bubble. An eco-
nomic order congenial to individualism
meant that life was sprouting from mul-
titudinous centers, initiatives were being
taken at a thousand points and ingenuity
was in constant exercise through the
pressure of need or the assurance that it
would have its reward. The case is illus-
trated in 17th-century England by the
famous "protectors"financial promoters
busy devising schemes for making mon-
ey. They slide easily into reformers mak-
ing plans for female education or a so-
cialistic order or a better form of gov-
ernment.

STRENGTH OF A BEAM was one of the problems in which Galileo demonstrated the pow-
er of mathematical methods in science. Illustration is taken from his Discor.i e dimostra-
zioni matematiche, in which he described the "new sciences" of mechanics and motion.
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rhe whole of Western society was in
movement, science and technology,,

industry and agriculture, all helping to
carry one another along. But one of the
operations of societywarhad probably
influenced the general course of things
more than is usually recognized. War
above all had made It impossible for a
king to "live of his own," enabling his
subjects to develop constitutional ma-
chinery, to insist on terms in letin n for
a grant of money. Because of svai s,

kings were allied ss ith advanced cap-
italistic developments from the closing
centuries of the Middle Ages. The
growing demands of governments m
the extreme case of war tightened up
the whole development of the state and
produced the intensification of the idea
of the state The Bank of England and
the national debt emerge during a con-
flict between England and France,
which almost turned into a financial war
and brought finance into the very struc-
ture of government. In the 17th century
armies had been mounting in size, and
the need for artillery and for vast num-
bers of uniforms had an important effect
on the Sig! Of (.0/1101111C enterprises.

The popularity in England of the nat-
ural sciences was paralleled to a degree
by an enthusiasm for antiquarian pur-
suits In the later decades of the 17th
century the scientific method began to
affect the development of historical
study. In turn, the preoccupation with
the process of things in time seems to
has e had an influence upon scientists
themselves Perhaps the presiding sci-
entific achievement in the next hundred
years was the application of biology,
geology and allied studies to the con-
struction of a history of the physical um-
verse. By the end of the period this
branch of science had come almost to
the edge of the Darwinian theory of
evolution. For the rest, if there was fur-
ther scientific "revolution" in the 18th
century, it was in the field of chemistry.
At the beginning of the period it had not
been possible to isolate a gas or even
to recognize clearly that different gases
existed. In the last quarter of the century
Lavoisier reshaped this whole branch of
science; water, which had been regarded
for thousands of years as an element, was
now seen to be a compound of oxygen
and hydrogen.

By this time Englandthe nation of
shopkeeperswas surprising the world
with developments in the industrial field.
A class of men had emerged who were
agile in intellect, capable of self-help and
eager for novel enterprises. They often
lacked the classical education of the
time, and were in a sense cut off from
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DETAILS OF STEAM ENGINE are reproduced from Jame,. Watt% patent of 1769. The
change from water to .team power in textile fartorie. intenvified the intluvtrial revolution.

their cultural inheritance; and they no
longer had the passion to intervene in
theological controversy. Science and
craftsmanship, combined with the state
of the market, enabled them, however,
to indulge their zeal for gadgets, me-
chanical improvements and inventions.

A considerable minor literature of the
time gives evidence of the svulespiead
passion for the production of technical
devices, a passion encouraged sometimes
by the policy of the government. Between
1760 and 1785 more patents were taken
out than in the preceding 60 years; and
of the estimated total of 26,000 patents

for the whole century, about half woe
crowded into e 15 years after 1785. In
1761 the Society for the Encourage-
ment of the Arts, Manufactures and
Commerce, established a few years
earlier, offered a prize for an invention
that would enable six threads to be spun
by a single pair of hands. A few years
later Hargreave's spinning jenny and
Arkmight's water frame appeared. The
first steam engine had emerged at the
beginning of the century, but textile lac-
todes began by using water power. The
change to steam both here and in the
production of iron greatly intensified the



Industrial revolution that was to Ate'
the landscape so profoundly in the 19th
century.

The counti y was able to meet the needs
I of a rapidly expanding population,

especially as industrial development
was accompanied by an agrarian revolu-
tionthe birth of something like modern
fanning. Possibly as a result of a change
in the prevalent type of rat, England
ceased to suffer from the plague that had
ravaged it for centuries Advances in
public-health techniques helped reduce
the death rate, especially among infants
During the 18th century the English
population rose from 5 5 to nine million
And people flocked to swell the grossing
industrial towns, as though assured that
they 1, 2ie fleeing from something woi se
to something better.

Even in 1700 most Englishmen weir
still engaged in occupations of a prnmay
nature, connected with farming, fishing,
mining and so on London had pel haps
half a million inhabitants, but Bristol,
which came next, may have had only
20,000 Very few towns had a population
exceeding 10,000. Each country town
had its miller, its 'newel, its tanner and
so on, each village had its baker, its
blacksmith and its cobbler Many of the
people who %vele employed III industry

in the making of textiles, for example
carried on the work in their own homes

with hand looms and spinning wheels,
they supplemented then income by
farming.

The coming of the factory system and
the growth of towns represented an un-
precedented nansformation of life and
of the human envuomnent, besides
speeding up the late of all future change.
This denser and more complicated world
requited more careful policing, more
elaborate administration and a tremen-
dous increase in the tasks of government.
The mere growth and distribution of
population, and the fresh disposition of
forces that it pi Mixed within society,
are fundamental factors in the history
of the 19th century.

With gathering momentum came
railways, the use of electricity, the in-
ternalcombustion engine and today the
world of elect' °um and nuclear weap-
ons. Science, so long al aid to the in
ventor, now seems itself to need the en-
gineer and the industrial magnate. And
all the elaborate appal atus of this techni-
cal civilization is easily communicable to
every quarter of the globe Our scientif-
ic-industrial revolution is a historical
landmark for those peoples to whom
Renaissance and Reformation have no
relevance, since Christianity and Creek

antiquity are not in then thulium The
material apparatus of our cis dization is

more communicable to other continents
than are our more subtle and nnpondm -
able ideas.

Yet
the humanism that has its roots so

far back in our history has by no
means lost its hold on the world. In the
West, indeed, it lie.? touches vastly ss 'dm
classes of peoples than were able to read
at all before the days of the industrial
revolution That revolution requires the
spread of education, and at the same
tune provides the apparatus for it. The
extraordinary speeding-up of communi-
cations and the increased mobility of life
have themselves had colossal educative
results. It was under the ancient ordei
that the peasantry were sometimes felt
to be like cows; Job' Wesley, although
he held so fir mly that the lowest classes
were redeemable, himself described
them with astonishing fl equency as wild
beasts. The new era has raised the
stature of men, not lowered it, as some
have imagined; and seems to require (en
to produce) a more genuine kind of
moral autonomy.

The Scientific Revolution

Cleat literatine is perhaps more wide-
ly appi coated at the present day than
esti* in pre% ions history. The light%
and freedoms of man and the indepen-
dene and self - respect of nations have
never been more glorified than in our
own century. And %se have 0,111%111m'
these ideals to other parts of the globe
The scientific-industrial revolution has
operated to a great saving of life At the
same time it has provided a sin stem

.s Inch, where it has pi evaded, has so
fru enabled the expanded population to
live.

The vastness of populations and the
character of the technical resolution it-
self have led, however, to certain dan-
gers The development of high -posse ed
mg:mm.10mi means that a colossal ma-
chine can now be put at the sera ice of
a possible dictatorship. It is not yet cleat
that the character of the resulting civil-
ization will necessarily undermine the
dictatoi ship and produce the re- estab-
lishment of what we call Western values.
In this sense the elaborate nature of the
system may come to undermine that
wonderful individualism that gave it its
stmt. At the same time, when nations

SPINNING FRAME, patented by Richard Arkwright in 1769, produced superior yarn. In
his application the inventor said the machine would be of "great utility" to manufacturers
and to the public "by employing a great number of poor people in working said machinery."
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are ranged against one anodic", each
may feel forced to go on elaborating and
enlarging ever more terrible weapons,
though no nation wants them or ever in-
tends to use them. Weapons may then
defeat their own ends, and man may find
himself the slave of the machine

146

The Western ideal of democracy r;
older than the scientific-industrial 'evo-
lution, but it may eventually prove a
necessary concomitant of that revolu-
tion, wherever the revolution may
spread. At this point we simply do not
know. There are certain things k e can-

not achieve without tools But the tools
in themselves do not necessarily deter-
mine our destiny



The effect of tne tne age, 1 Galileo
and Newton, particularly on literature and religion, is
discussed in this brief article.

16 How the Scientific Revolution of the Seventeenth Century
Affected Other Branches of Thought

Basil Willey

1959

IN order to get a bird's-eye view of any century it is quite
useful to imagine it as a stretch of country, or a land-

scape, which we are looking at from a great height, let us
say from an aeroplane. If we view '..he seventeenth century
in this way we shall be struck immediately by the great
contrast between the scenery and even the climate of its
earlier and that of its later years. At first we get mountain
ranges, torrents, and all the picturesque interplay of alter-
nating storm and brightness; then, further on, the land
slopes down to a richly cultivated plain, broken for a while
by outlying heights and spurs, but finally becoming level
country, watered by broad rivers, adorned with parks and
mansions, and lit up by steady sunshine. The mountains
connect backwards with the central medieval Alps, and the
plain leads forwards with little break into our own times. To
drop the metaphor before it begins to be misleading, we
may say that the seventeenth century was an age of transi-
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tion, and although every century can be so described, the
seventeenth deserves this label better than most, because it
lies between the Middle Ages and the modern world. It
witnessed one of the greatest changes which have ever
taken place in men's ways of thinking about the world they
live in.

I happen to be interested in literature, amongst other
things, and when I turn to this century : cannot help no-
ticing that it begins with Shakespeare and Donne, lead~ on
to Milton, and ends with Dryden and Swift: that is to say,
it begins with a literature full of passion, paradox, imagina-
tion, curiosity and complexity, and ends with one dis-
tinguished rather by clarity, precision, good sense and
definiteness of statement. The end of the century is the be-
ginning of what has been called the Age of Prose and
Reasbn, and we may say that by then the qualities neces-
sary for good prose had got the upper hand over those
which produce the greatest kinds of poetry. But that is not
all: we find the same sort of thing going on elsewhere. Take
architecture, for example; you all know the style of build-
ing called Elizabethan or Jacobeanit is quaint and fanci-
ful, sometimes rugged in outline, and richly ornamented
with carving and decoration in which Gothic and classical
ingredients are often mixed up together. Well, by the end
of the century this has given place to the style of Christo-
pher Wren and the so-called Queen Anne architects, which
is plain, well proportioned, severe, and purely classical
without Gothic trimmings. And here there is an important
point to notice: it is true that the seventeenth century begins
with a blend of medieval and modern elements, and ends
with the triumph of the modern; but observe that in those
days to be 'modern' often meant to be 'classical', that is,
to imitate the Greeks and Romans. We call the age of
Dryden, Pope and Addison the 'Augustan' Age, and the
men of that time really felt that they were living in an epoch
like that of the Emperor Augustusan age of enlighten-
ment, learning and true civilisationand congratulated
themselves on having escaped from the errors and super-
stitions of the dark and monkish Middle Ages. To write and
build and think like the ancients meant that you were rea-
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sonable beings, cultivated and urbanethat you had aban-
doned the shadow of the cloister for the cheerful light of
the market place or the coffee house. If you were a scientist
(or 'natural philosopher') you had to begin, it is true, by
rejecting many ancient theories, particularly those of Aris-
totle, but you knew all the while that by thinking inde-
pendently and taking nothing on trust you were following
the ancients in spirit though not in letter.

Or let us glance briefly at two other spheres of interest:
politics and religion, beginning with politics. Here again
you notice that the century begins with Cavalier and
Roundhead and ends with Tory and Whigthat is to say,
it begins with a division arousing the deepest passions and
prejudices, not to be settled without bloodshed, and ends
with the mere opposition of two political parties, differing
in principle of course, but socially at one, and more ready
to alternate peaceably with each other. The Hancverians
succeed the Stuarts, and what more need be said? The
divine right of kings is little more heard of, and the scene
is set for prosaic but peaceful development. F%-.-ilarly in re-
ligion, the period opens with the long and l'i, er struggle
between Puritan and Anglic n, continuing through civil
war, and accompanied by fanaticism, persecution and exile,
and by thD multiplication of hostile sects; it ends with the
Toleration Act, and with the comparatively mild dispute
between the Deists and their opponents as to whether
Nature was not after all a clearer evidence of Cod than
Scripture, and the conscience a safer guide than the creeds.
In short, wherever you turn you find the same tale repeated
in varying forms: the ghosts of history are being laid; dark-
ness and tempest are yielding to the light of common day.
Major issues have been settled or shelved, and men begin
to think jnore about how to live together in concord and
prosperity.

Merely to glance at this historical landscape is enough
to mak" ore seek some explanation of these changes. If the
developments had conflicted with each other we might
have put them down to a numl-er of different causes, but
since they all seem to be setting in one direction it is natu-
ral to suppose that they were all due to one common
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underlying cause. There are various ways of accounting for
historical changes: some people believe, for instance, that
economic causes are at the bottom of everything, and that
the way men earn their living, and the way in which wealth
is produced and distributed, determine how men think and
write and worship. Others believe that ideas, rather than
material conditions, are what control history, and that the
important question to ask about any period is what men
then believed to be true, what their philosophy and religion
were like. There is something to be said on both sides, but
we are concerned with a simpler question. We know that
the greatest intellectual change in modern history was com-
pleted during the seventeenth century: was that change of
such a kind as to explain all those parallel movements we
have mentioned? Wouid it have helped or hindered that
drift towards prose and reason, towards classicism, enlight-
enment and toleration? The great intellectual change was
that known as the Scientific Revolution, and I think the
answer to the..a questions isYes.

It is not ior me to describe that revolution, or to discuss
the great discoveries which produced it. My task is only
to consider some of the effects it had upon men's thoughts,
imaginations and feelings, and consequently upon their
ways of expressing themselves. The discoveriesI am think-
ing mainly of the Copernican astronomy and the laws of
motion as explored by Galileo and fully formulated by
Newtonshocked men into realising that things were not
as they had always seemed, and that the world they were
living in was really quite different from what they had been
taught to suppose. When the crystal spheres of the old
world-picture were shattered, and the earth was shown to
be one of many planets rolling through space, it was not
everyone who greeted this revelation with enthusiasm as
Giordano Bruno ..igl. Many felt lost and confused, because
the old picture had not only seemed obviously true to com-
mon sense, but was confirmed by Scripture and by Ar-
istotle, and hallowed by the age-long approval of the
Church. What Matthew Arnold said about the situation in
the nineteenth century applies also to the seventeenth: re-
ligion had attached its emotion to certain supposed facts,
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and now the facts were failing it. You can hear this note
of loss in Donne's well-known lines:

And new philosophy calls all in doubt;
The element of fire is quite put out;
The sun is lost, and th' earth, and no man's wit
Can well direct him where to look for it.

Not only the element of fire', but the very distinction be-
tween heaven and earth had vanishedthe distinction, I
mean, between the perfect and incorruptible celestial bod-
ies from the moon upwards, and the imperfect and cor-
ruptible terrestrial bodies below it. New stars had appeared,
which showed that the heavens could change, and the tele-
scope revealed irregularities in the moon's surfacethat is,
the moon was not a perfect sphere, as a celestial body
should be. So Sir Thomas Browne could write:

'While we look for incorruption in the heavens, we
find they are but like the earth;durable in their main
bodies, alterable in their parts; whereof, besides comets
and new stars, perspectives (i.e. telescopes) begin to tell
tales, and the spots that wander about the sun, with
Phaeton's favour, would make clear conviction.'

Naturally it took a long time for these new ideas to sink
in, and Milton still treats the old and the new astronomies
as equally acceptable alternatives. The Copernican scheme,
however, was generally accepted by the second half of the
century. By that time the laws governing the motion of
bodies on earth had also been discovered, and finally it was
revealed by Newton that the law whereby an apple falls
to the ground is the very same as that which keeps the
planets in their courses. The realisation of this vast unify-
ing idea meant a complete re-focusing of men's ideas about
God, Nature and Man, and the relationships between them.
The whole cosmic movement, in the heavens and on earth,
must now be ascribed no longer to a divine pressure acting
through the Primum Mobile, and angelic intelligences con-
trolling the spheres, but to a gravitational pull which could
be mathematically calculated. The universe turned out to
be a Great Machine, made up of material parts which all
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moved through space and time ... ^ording to the strictest
rules of mechanical causation. That is to say, since every
effect in nature had a physical cause, no room or need was
left for supernatural agencies, whether divine or diabolical;
every phenomenon was explicable in terms of matter and
motion, and could be mathematically accounted for or pre-
dicted. As Sir James Jeans has said: 'Only after much study
did the great principle of causation emerge. In time it was
found to dominate the whole of inanimate nature. . . . The
final establishment of this law . . . was the triumph of the
seventeenth century, the great century of Galileo and New-
ton.' It is true that mathematical physics had not yet con-
quered every field: even chemistry was not yet reduced to
exactitude, and still less biology and psychology. But New-
ton said: 'Would that the rest of the phenomena of nature
could be deduced by a like kind of reasoning from me-
chanical principles'and he believed that they could and
would.

I referred just now to some of the immediate effects of
the 'New Philosophy' (as it was called); let me conclude
by hinting at a few of its ultimate effects. First, it produced
a distrust of all tradition, a determination to accept nothing
as true merely on authority, but only after experiment and
verification. You find Bacon rejecting the philosophy of the
medieval Schoolmen, Browne writing a long exposure of
popular errors and superstitions (such as the belief that a
toad had a jewel in its head, or that an elephant had no
joints in its legs), Descartes resolving to doubt everything
even his own sensesuntil he can come upon something
clear and certain, which he finally finds in the fact of his
own existence as a thinking being. Thus the chief intellec-
tual task of the seventeenth century became the winnowing
of truth from error, fact from fiction or fable. Gradually a
sense of confidence, and even exhilaration, set in; the uni-
verse seemed no longer mysterious or frightening; every-
thing in it was explicable and comprehensible. Comets and
eclipses were no longer dreaded as portents of disaster;
witchcraft was dismissed as an old wives' tale. This new
feeling of security is expressed in Pope's epitaph on New-
ton:
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Nature and Nature's laws lay hid in night;
God said, Let Newton be! and all was light!

How did all this affect men's religious beliefs? The effect
was very different from that of Darwinism on nineteenth-
century religion. In the seventeenth century it was felt that
science had produced a conclusive demonstration of God,
by showing the evidence of His wisdom and power in the
Creation. True, God came to be thought of rather as an
abstract First Cause than as the personal, ever-present God
of religion; the Great Machine implied the Great Mechanic,
but after making the machine and setting it in motion God
had, as it were, retired from active supeintendence, and
left it to run by its own laws without interference. But at a
time when inherited religious sentiment was still very pow-
erful, the idea that you could look up through Nature to
Nature's God seemed to offer an escape from one of the
worst legacies of the pastreligious controversy and sec-
tarian intolerance. Religion had been endangered by inner
conflict; what could one believe, when the Churches were
all at daggers drawn? Besides, the secular and rational tem-
per brought in by the new science soon began to undermine
the traditional foundations of belief. If nothing had ever
happened which could not be explained by natural, physi-
cal causes, what about the supernatural and miraculous
events recorded in the Bible? This was a disturbing thought,
and even in the seventeenth century there were a few who
began to doubt the literal truth of some of the biblical nar-
ratives. But it was reserved for the eighteenth century to
make an open attack upon the miraculous elements in
Christianity, and to compare the Old Testament Jehovah
disparagingly with the 'Supreme Being' or 'First Cause' of
philosophy. For the time, it was possible to feel that science
was pious, because it , as simply engaged M studying
God's own handiwork, and because whatever it disclosed
seemed a further proof of His almighty skill as designer of
the universe. Addison exactly expressed this feeling when
he wrote:

The spacious firmament on high,
With all the blue ethereal sky,
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And spangled heavens, a shining frame,
Their great Original proclaim.
Th' unwearied Sun from day to day
Does his Creator's power display;
And publishes to every land
The work of an Almighty hand.

Science also gave direct access to God, whereas Church and
creed involved you in endless uncertainties and difficulties.

However, some problems and doubts arose to disturb the
prevailing optimism. If the universe was a material mecha-
nism, how could Man be fitted into it?Man, who had
always been supposed to have a free will and an immortal
soul? Could it be that those were illusions after all? Not
many faced up to this, though Hobbes did say that the soul
was only a function of the body, and denied the freedom of
the will. What was more immediately serious, especially
for poetry and religion, was the new tendency to discount
all the products of the imagination, and all spiritual insight,
as false or fictitious. Everything that was real could be
described by mathematical physics as matter in motion, and
whatever could not be so described was either unreal or
else had not yet been truly explained. Poets and priests had
deceived us long enough with vain imaginings; it was now
time for the scientists and philosophers to take over, and
speak to us, as Sprat says the Royal Society, required its
members to do, in a 'naked, natural' style, bringing all
things as close as possible to the 'mathematical plainness'.
Poets might rave, and priests might try to mystify us, but
sensible men would ignore them, preferring good sense, and
sober, prosaic demonstration. It was said at the time that
philosophy (which then included what we call science)
had cut the throat of poetry. This does not mean that no
more good poetry could then be produced: after all, Dry-
den and Pope were both excellent poets. But when all has
been said they do lack visionary power: their merits are
those of their agesense, wit, brilliance, incisiveness and
point. It is worth noticing that when the Romantic move-
ment began a hundred years later, several of the leading
poets attacked science for having killed the universe and

154



How the Scientific Revoluthio cat the C, ntoiv
tod Other Branches of Thc,A.ight

turned man into a reasoning machine. But no such thoughts
worried the men of the Augustan Age; their prevailing feel-
ing was satisfaction at living in a world that was rational
through and through, a world that had been explained
favourably, explained piously, and explained by an Eng-
lishman. The modern belief in progress takes its rise at this
time; formerly it had Leen thought that perfection lay in
antiquity, and that subsequent history was one long decline.
But now that Bacon, Boyle, Newton and Locke had arisen,
who could deny that the ancients had been far surpassed?
Man could now hope to control his environment as never
before, and who could say what triumphs might not lie
ahead? Even if we feel that the victory of science was then
won at the expense of some of man's finer faculties, we can
freely admit that it brought with it many good gifts as well
tolerance, reasonableness, release from fear and super-
stitionand we can pardon, and even envy, that age for its
temporary self-satisfaction.
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11 Rigid Body (Sings)
Report on Tait's Lecture on Force: B.A.1876

James Clerk Maxwell

1876, earlier

IN MEMORY OF EDWARD WILSON,

IVho repeated of what was in his mind to write after section.

Rigid Body (sings).

GIN a body meet a body
Flyin' through the air,

Gin a body hit a body,
Will it fly ? and where ?

Ilka impact has its measure,
Ne'er a age hae I,

Yet a' the lads they measure me,
Or, at least, they try.

Gin a body meet a body
Altogether free,

How they travel afterwards
We do not ale

Ilka problem has its method
By anal.) tics high ;

For me, I ken na awe 0' them,
But what the N1 IMF alll
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Ri:rour ua TAres 1.r.ernur. ua For, is : 1871i.

Yt: expect to beat
liter some new thing,

Pe nothing new to tell, but %%hat, I fear,
May be a true thing.

For Tait come, with hi, plummet awl hi, line.
Quick to detect your

Old bosh new dresed in what, you call a line
Popular lectuic.

Whence come., that nuet, pectlii,tr
IlvAld. in our section

Pure nonseir-,-, to a cientilic swing
1)iilled to peacetion

That small oul "Force," they make' a I)arbet'.
Ready to put on

Memling, ino.t. grange and carious, tit to hock
Pupils of Newton.

Ancient and foreign ignorance they throw
Into the bargain ;

The shade of Leibuitz2 mutters from below
I lorrible jargon.

The phr.eses of la-t century in this
Linger to play tricks

Vzs and I is Jtorlua and Vis
cceleratrix

Thole long-nebbed words that to our text books still
Cling by their titles,

And from them creep, as entozoa will,
Into our vitals.

But see ! Tait %vrites in lucid symbols clear
One .mall equation ;

And Force becomes of Energy a mere
Space-variation.

Force, then, is Force, but mark you ! not a thing,
Only a Vector ;

Thy barbed arrows now have lost their sting,
Impotent spectre !

Thy reign, 0 Force! is over. Now no more
Heed we thine action ;

Repulsion leaves us where we were before,
So does attraction.
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Rigid Bpdy (Sings)
Report on Tait's Lecture on Force: B.A. 1876

Both Action and Reaction now are gone.
Just ere they vanished,

Stres joined their hand,: in peace, and wile them One :
Then they were banished.

The Universe is free from pole to pole,
Free from all tomes.

Rejoice ! ye starslike blessed gods ye roll
On in your courses.

No more the arrows of the Wrangler lace,
Piercing shall --ound you.

Forces no more, those symbols of digrate,
Dare to surround you :

But those whose statements baffle all attack',
Safe by evasion,

Whose definitions, like a nose of wax,
Suit each occasion,

Whose unreflected rainbow far surpassed
All our inventions,

Whose very energy appears at List
Surat of dimensions :

Ate these the gods in whom ye put your trust
Lordlings and ladies

The hidden' potency of cosmic dust
Drives them to Hades.

While you, brave Tait ! who know so well the way
Forces to scatter,

Calmly await the slow but sure decay,
Even of Matter.
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18 The Vision of Our Age
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This book began at the birth of a child, and traced
its development until it enters 'the gateway to
imagination and reason'. This is the stage when the
child can manipulate objects in thought as well as
with its hands: when it can make images of them.
The child has little knowledge yet, in the ordinary
sense of the word; but it has the mental equipment
to learn and create knowledge. Once a child can make
images, it can also reason, and build for itself a
coherent picture of the world that is more than
separate bundles of sense impressions.

We have just seen that when a child enters 'the
gateway to imagination', it leaves all animals be-
hind. Before it learns to make images, a young
human develops in much the same way as a young
animal. Children and animals alike have to learn to
co-ordinate their various senses and to recognise
objects. But after that, animals fall behind. They have
no power of imagination. That is, they cannot carry
images in the mind; and without imagery, without
an inner language, they cannot manipulate ideas.

The theme of imagination runs through this book.
We have examined some of the great achievements
of science and seen that they are imaginative ideas.
Science does not merely plod on like a surveyor,
laboriously mapping a stretch of country, square
mile by square mile. Of course nature must be sur
veyed, and very laborious that is at times; but the
survey is not the end. The great moments in science
come when men of imagination sit down and think
about the findingswhen they recreate the land-
scape of nature under the survey.

Science must be solidly grounded in fact and in

experiment. But a blind search for experimental
facts is not enough; it could never have discovered
the theory of relativity. Science is a way of looking
at things, an insight, a vision. And the theories of
science are the underlying patterns that this way of
looking at the world reveals. Many of the patterns
are unexpected even at the simplest beginnings. (For
example, common sense would not even have ex-
pected to find that stars and human beings are put
together from the same basic building bricks of
matter.) And the more unexpected the pattern, the
greater the feat of imagination that is needed to see
it for the first time.

What place have these imaginative ideas of science
in our daily thoughts? Science and technology have
transformed the physical world we live in; but have
they yet had muca effect on thought? Many people
even dislike the ideas of science, and feel that they
arc. abstract and mechanical. They reject science
because they fear that it is in some way inhuman.

This book shows that science is as much a creation
of the human imagination as art is. Science and art
are not opposites; they spring from the same human
impulses. In this last chapter, we shall examine their
relations to one another, in the past and today. In
particular, we shall see how both enter and combine
into the way man in the twentieth century sees the
world: the vision of our age. For this purpose, we
shall include personal statements about their own
work by an artist, an architect, a scientist, and a
writer.

The artist is the sculptor Eduardo Paolozzi. The
group of pictures show him in his studio, then one
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of his sculptures being cast in the foundry, then one
of his finished sculptures called San Sebastianwith
a jet engine standing in the backgrojnd and finally
another recent work.

This is what Eduardo Paolozzi had to say about
his work and the world for which it is made.

'I am a sculptor, which means that I make images.
As a sculptor I was taught at the Slade the classical
idea of being an artist. The best one could do would
be to emulate Victorian ideals and to work in a
studio executing portraits or monuments.

'But there has been a rejection now of the class-
ical idea of tracing art out of art, which c, ii, a way
a sort of death process leading to the provincial
gallery, with the atmosphere of the death-watch
beetlea gilt-edged, sure-thing idea of art.

'In this century we have found a new kind of
freedoman opening up of what is possible to the
artist as well as to the scientist. So I don't make
copies of conventional works of art. I'm not working
for Aunt Maud; I'm trying to do things which have
a meaning for us living today. So I work with
objects which are casual and natural today, that is,
mechanisms and throwaway objects. To me they are
beautiful, as my children are beautiful, though in a
different way. I think they are different definitions of
beauty.

'1 haven't got any desire to make a sculpture of
my children; but a wheel, a jet engine, a bit of a
machine is beautiful, if one chooses to see it in that
way. It's even more beautiful if one can improve it,
by incorporating it in one's iconography. For in-
stance, something like the jet engine is an exciting
image if you're a sculptor. I think it can quite fairly
sit in the mind as an art image as much as an
Assyrian wine jar. I think it's a beautifully logical
image, in the sense that anything in its delicate
structure, with its high precision standards, has got
a reason, almost in a way like human anatomy.

'My San Sebastian was a sort of God I made out
of my own necessity: a very beautiful young man
being killed by arrows, which has a great deal of
symbolism in it. I think this is a good thing for young
artists to identify themselves with, in a way that
doing the Madonna and Child may not be a thing
they ce.ri identify themselves with. It has two legs,
which are decorated columns, it has a rather open,
symbolical square torso, with disguised, warped,
twisted, mechanic elements. Then the final element
is a sort of drum with a space cut in the middle.

'What I feel about using the human diagram is
that it points up in a more specific way the relation-
ship between man and technology. There isn't any
point in having a good idea in sculpture unless there
is some kind of plastic or formal organisation. So
I don't reproduce the jet engine, I transform it. And
I use the wheel a lot in my sculpture as a symbol,
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as a quickly read symbol, of the ian -made object.
This also refers back to my crude peasant idea of
science, which is that the wheel gives the idea of man
being able to get off the ground. The wheel to me is
important, and the clock. I think this is very sig-
nificantI find the clock moving because I find
modern science moving. I see it as a sort of heroic
symbolism.

In the last fifty years, science seems to be the
outstanding leading direction, the most considerable
direction that man has taken. It is trying continually
to go beyond what was possible till that very
moment. 1 think there is a possibility in what I call,
crudely, higher science, a tremendous possibility of
man being free. And I think it can give me a certain
kind of moral strength, in the sense that art can
move into a similar category of freedom. In my
sculpture I am trying to speak for the way people
are freeing themselves from traditional ideas. I'm a
sculptor and so I put these ideas into images. If I
do this well they'll be heroic images, ones that will
survive and ones which other ages will recognise.
Image making gives me the sense of freedom in a
way that nothing else can.'

A word to which Paolozzi returns several times is
'free'. He feels that science frees man, from his
conventions, from the restrictions of his environ-
ment, from his own fears and self-doubts. If this is
true, then man has gained this growing freedom by
imagination: in science, by imagining things that have
not yet happened. Paolozzi wants to communicate
the same sense of growing freedom in the images of
his sculpture. He wants people to feel that they are
heroic images.

Science and art are both imaginative activities,
and they present two sides of the imagination. The
two sides have often tried and often failed to come
together, in the past and in recent time. This chapter
itself, and this book, is an attempt to help bring
them together. Paolozzi's work is also an attempt to
bring them together, in a different language. He
uses the everyday products of technology (the
stamped shapes in the first picture, for example) as
the raw material of his art, because they seem to him
as natural and expressive in modern civilisation as
the human body itself.

It is interesting to look at the two sides of the
human imagination in an earlier civilisation. We
have evidence for them, long even Wore writing was
invented. These paintings, in the caves of Lascaux in
southern France, are at least twenty thousand years
old. They are the most famous and the finest ex-
amples of art from the Stone Age. The word 'art'
is not out of place, and yet it is most unlikely that
these pictures were created in the same spirit as
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classical art. The caves of Lascaux were not a Stone
Age art gallery that people came to visit. Art of this
kind was an integral part of the civilisation of
Stone Age man.

The Lascaux paintings are a product of one side
of the imagination of the men who lived twenty
thousand years ago. This picture shows a product of
the other side of their imagination. It is a tool: a
harpoon, cut from bone. It has barbs, like a modem
fish hook, to stop it from being pulled out when it
lodges in an animal.

The next picture shows a tool again, and of a
subtler kind. It does not look as impressive as the
harpoon, yet it is in fact a more far-sighted invention.
For it is a tool for making tools: it is a stone graver
of the sort that must have been used to cut the barbs

in the harpoon. The men who invented this were able
to think beyond the immediate needs of the day
killing an animal, cutting it up, scraping its hide.
When they invented a tool for making tools (today
we should call that a machine-tool) they took a new
step of the imagination.

What is the link between paintings on the wall of
a cave, and primitive tools made of bone and flint?
Separated as we are by twenty thousand years from
the men who created both, we can only speculate.
But we are surely right in speculating that the paint-
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ings served some purpose other than mere decoration.
Look at another Lascaux painting. It represents
/three bulls and (probably) a boar. A bull is being
struck by a spear with barbsa spear like the one
that we have seen. This is plainly a hunting scene.
Many of the other cave paintings show similar
scenes. The painters were constantly preoccupied
with hunting. This is why most authorities agree that
the paintings were some kind of magic, and were
intended to help the hunter to dominate the animal
before the hunt started.

Unhappily, 'magic' is one of those words
(instinct' is another) that does not really explain
anything. It merely says that we do not know the
explanation. What kind of magic were the painters
making? What did they feel they were doing for the
hunters? How did they think that they were helping
them to dominate the hunted animal?

Here I will give my personal view. I think that the
paintings helped the men who painted them, and
the men who lived in the caves with them, to conquer
their fear of the hunted animal. A bull was (and is)
a dangerous beast, and out in the open there would
not a much time to think about him. By drawing
him you become familiar with him, get used to the
idea of meeting and hunting him, and imagine ways
in which he can be outwitted. The close-up makes
the bull familiar to you; and the familiar is never
as frightening as the unknown.

It is not far-fetched here to draw an analogy with
modern methods of training. Consider, for example,
the training of spacemen. They have to face a
frightening situation, in which what they fear is
simply the unfamiliar and unknown. They will not
survive if they panic; they will do the wrong thing.
So a long and life-like training programme is de-
signed to make them familiar in advance with every
situation that they are likely to encounter. The
spaceman's training is more than a matter of simply
learning to press the right buttons. It is also a
psychological preparation for the unknown.

I believe that the Stone Age cave paintings were
also a psychological preparation for the unknown.



Th,:y helped the Stone Age hunters to dominate
their psychological environment, just as flint and
bone tools helped them to dominate their physical
environment. That is the connecting link between
the two. Both are tools, that is, instruments which
man uses to free himself and to overcome the
limitations of nature. It was Benjamin Franklin who
first defined man as the tool-making animal'. He
was right, and the tools are mental as well as
physical.

We move forward now many thousand years, to a
time and place where the two sides of the human
imagination worked more closely together than ^ver
before, and perhaps ever since. The pictures on the
right come from Athens of the fifth century B.C.
The men who built this city had suddenly burst out
of the confines of the cave and come into the light
of freedom. Their civilisation recognised that man's
most powerful tool in the command of nature is the
human mind. The Greeks named their city, and the
great temple of the Parthenon in it, after the goddess
of ?wisdom, Athene. Light and reason, logic and
imagination together dominated their civilisation.

Greek architecture, for example, has a strong
mathematical basis, yet it never appears stiff and
mechanical. Look at the Parthenon, as perfect a
creation in architecture as man has made; and it is
dominated by a precise sense of numbers. Numbers
had a mystical significance for the Greeks (Pythag-
oras made them almost into a religion) and this
expressed itself in all they did.

The Parthenon has 8 columns along the front and
17 along each side. That to the Greeks was the ideal
proportion. The number of columns along each side
of a temple should be twice the number along the
front, plus one more. No Greek architect would
have built otherwise.

Numbers that are perfect squares seeilic.2 to the
Greeks equally fascinating and beautiful. The Par-
thenon is 4 units wide and '; .:nits long; for 4 is the
square of 2, anc k the square of 3the two
smallest squares. The ratio of height to width along
the front of the building is also 4 to 9: and so is the
ratio of the thickness of the columns to the distance
between thein.

Yet all this arithmetic is not a dead ritual The
Greeks found it exciting because they found it in
natural objects. To them, it expressed the mystery
of nature, her inner structure. Numbers were a key
to the way the world is put together: this was the
belief that inspired their science and their art
together.

So the Parthenon is nowhere merely a set of
mathematical relations. The architect is guided by
the numbers, but he is never hidebound by them.
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His plan begins with arithmetic, but after that the
architect himself has taken command of the building,
and has given it freedom, lightness and rhythm. For
example, the end columns are closer to their neigh-
bours than are the other columns; and the end
columns are also a little thicker. This is to make the
building compact, to make it seem to look inwards
at the corners. And all the columns lean slightly
inwards, in order to give the eye (and therefore the
building) a feeling of upward movement and of
lightness.

The pictures on the right are of the Erictheum. It
stands close to the Parthenon, but is less famous.
Perhaps that is because the Erictheum is less monu-
mental, more slender, more delicate in its whole
conception. Yet the mathematics is still there. The
porch of the Erictheum, for instance, is designed on
the 'golden section'. That is, the canopy has thesame
proportion to the base as the base has to the human
figures which support the canopy. The golden section
was a mathematical relation which was based on
nature: on the proportions of the human body.

The human figures which support the canopy are
made to seem in movement; two rest on the right
foot, two on the left. Everywhere in the Erictheum
there is the feeling of movement. The different levels
of the building are joined together with suppleness
and rhythm. This is what the Erictheum expresses in
architecture: an almost musical sense of rhythm. And
this reminds us that Pythagoras prided himself, right-
ly, on having discovered the mathematical structure
of the musical scale.

The fusion of the mathematical order with the
human, of reason with imagination, was the triumph
of Greek civilisation. The artists accepted the math-
ematics, and the mathematicians did not resent the
architects imposing their individuality on the math-
ematical framework. It was a civilisation which
expressed itself in the way things were put together
buildings, ideas, society itself. Greek architecture
survives to illustrate this, perhaps better than any
other record.

All architecture must begin with technical effi-
ciency. Walls have to stand up, roofs have to keep
the rain out. So an architect can never be unpractical,
as can a painter or a sculptor. He cannot be content
with the mere look of the thing. The side of the
human imagination which made the Stone Age tools
cannot be left out. But a bad architect can play it
down, and can take the practical for granted, as a
painter takes his canvas for ,;ranted.

The strength of the best architecture today is that
it does not despise the practical purposes of build-
ings. It does not hide the structure and function
under merely elegant decoration. Structure and func-
tion in modern buildings play the sum fundamental
part as numbers in Greek architecture. They form

166

4,4644 .;

11-7.415PitsilifielN4

Asir

a



the framework on which the architect imposes his
individual imagination. And he does not pretend
that the framework is not there.

Our next personal statement comes from a famous
architect, Eero Saarinen. He was born in Finland but
built most of his great buildings in America. The
pictures below show the building that he did
not live to finish, theTWA Air Terminal at Idlewild
Airport in New York. The lines of the building are
very dramatic, and the form is consciously mathe-
matical and aerodynamic. The question is: Is the
bold, flying shape necessary, or is it a romantic
artifice without a true function? I discussed this with
Eero Saarinen during the building, and this is how
he replied.

To really answer your question, I would have to
go a little bit back, and talk philosophically about
architecture. As you know, we all, in architecture,
have been working in this modern style, and certain
principles have grown up within it. The basic prin-
ciples are really three. There is the functional part.
There is the structural part, honestly expressing the
structure of the building. And the third thing is that
the building must be an expression of our time. In

of Our Age

other words, the technology of our time must be
expressed in a building.

Now those are the principles that we are all
agreed onthe principles that one might have said
ten years ago were the only principles. I think since
that time more thought and maybe some more
principles have grown up. I would say one of these
additional principles, one which I believe in, is that
where buildings have a truly significant purpose they
should also express that purpose.'

Function and purpose were not the same thing in
Saarinen's mind. The TWA Air Terminal has a clear
function: to handle passengers into and out of
aeroplanes. But for Saarinen, it also had a deeper
purpose: from here people were to fly, and he wanted
to give them the sense of freedom and adventure
which flying has for earth-bound men. The vaulted
shapes of the building were well-conceived as struc-
tures, but they were meant to be more: their aero-
dynamic and birdlike look was to express what
Saarinen called the purposethe sense of going off
to fly. And the long spurs reaching out from the
building show that it is not something self-contained,
an end-point. They suggest entering the building and
leaving it, which is of course what the passengers do.
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Eero Saarinen went on:
'The last thing that I've become convinced of, and

I'm not the only one, there are many others, is that
once you've set the design, it must create an archi-
tectural unity. The idea of the barrel vaults making
the roof of the Air Terminal building is carried
through in all the details, even the furnishings.

'Basically architecture is an art, though it is half-
way between an art and a science. In a way it
straddles the two. I think to a large degree the
motivating force in the designing of architecture
comes from the arts side. If you ask, Are these curves
and everything derived from mathematics? the an-
swer is No. They are sympathetic with the forces
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within the vaults, which is mathematical, but there
arc so many choices which one has, and these really
come from the aesthetic side.

To me architecture is terribly important because
it is really an expression of the whole age. After
we're dead and gone, we're going to be judged by
our architecture, by the cities we leave behind us,
just as other times have been. What man does with
architecture in his own time gives him belief in him-
self and in the whole period. Architecture is not just
a servant of society, in a sense it's a leader of
society.'

Architecture straddles art and science. That state-
ment is true of the Greek architecture of two thous-
and years ago as well as of the architecture of today.
In this, the Greek imagination is close to our own.
The Greeks were preoccupied with the idea of struc-
ture; and we have seen in this book that the idea of
structure is also central to modern science. Like the
Greeks. the modern scientist is always looking at the
way things are put together, the bones beneath the
skim How often in this book have we used such
phrases as 'the architecture of matter' !

For example, the Greeks invented the idea of the
atom as the smallest unit of matter from which
everything in the world is built. Plato thought there
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were five kinds of atom, and he pictured them as the
five regular solids of geometry. The first four were
the atoms of the four kinds of matter: earth, air,
fire, and water; one of these is shown in the first
picture below. The fifth was the universe itself, the
unity of the other fourwe still call it the quintessence;
it is shown, as Plato imagined it, in the second pic-
ture.

This conception is fantastic, and the atoms it
pictures have no relation to the facts. And yet the
fanciful pictures are a first attempt to solve, imagina-
tively, the same problems of structure and behaviour
that the modern physicist faces. The Greek concep-
tion and the modern theories about atoms are both
attempts to explain the bewildering complexity of
the observable world in terms of an underlying,
unifying order. Greek scientific theories are now only
of historical interest. Yet before the Greeks, no one
had thought about the world in this way at all.
Without them, there would have been no modern
science. It was the Greeks who first formulated the
problems that modern science tries to answer.

Our third personal statement comes from a physi-
cist: Professor Abdus Salam, of the Imperial College
of Science in London. He describes some modern
ideas about atoms. They are a long way from Plato's
regt,:iir solids; as Professor Salam points out,
that is where they :started. Here is what Salam said.

'I am a theoretical physicist, and we theoretical
physicists are engaged on the following problem.
We would like to understand the entire complexity
of inanimate matter in terms of as few fundamental
concepts as possible. This is not a new quest. It's the
quest which humanity has had from the beginning
of timethe Greeks were engaged on it. They con-
ceived of all matter as being made up of fire, water,
earth and air. The Arabs had their ideas about it
too. Scientists have been worried about this all
through the centuries. The nearest man came to
solving this problem was in 1931 when, through the
work done in the Cavendish Laboratory in Cam-
bridge, we believed that all matter consisted of just
two particles--electrons and protonsand all forces
of nature were essentially of two kinds, the gravita-
tional force and the electrical force.

Now we know that this view of 1931 was erron-
eous. Since that time the number of particles has
increased to thirty, and "le number of elementary
forces to four. In addition to the electrical and
gravitational forces, we now believe that there are
two other types of force, both nuclearone extremely
strong, and the other extremely weak. And the task
we are engaged on is to try to reduce this seeming
complexity to something which is simple and
elementary.



Now the type of magic which we use in order to
solve our problem is first to rely on the language
which we use throwing up ideas of its own. The
language which we use in our subject is the language
of mathematics, and the best example of the language
throwing up ideas is the work of Dirac in 1928. He
started with the idea that he would like to combine
the theory of relativity and the theory of quantum
mechanics. He proceeded to do this by writing a
mathematical equation, which he solved. And to his

astonishment, and to everyone's astonishment, it was
found that this equation described not only the part-
icleselectrons and protonswhich Dirac had de-
signed theequation for, but also particles of so-called
anti-matteranti-electrons, anti-protons.

'So in one stoke Dirac had increased the number
of particles to twice the number. There are the
particles of matter, there are the particles of anti-
matter. In a sense, of course, this produces simplicity
too, because when I speak of thirty particles, really
fifteen of them are particles and fifteen of them are
anti-particles. The power of mathematics as a lang-
uage that suggests and leads you on to something,
which we in theoretical physics are very familiar with,
reminds me of the association of ideas which follows
when possibly a great poet is composing poetry. He
has a certain rhyme, and the rhyme itself suggests
the next idea, and so on. That is one type of way in
which invention comes about.

The second type of idea which we use to solve

our problems is the idea of making a physical picture.
A very good illustration is the work of the Japanese
physicist Yukawa in 1935. Yukawa started to ponder
on the problem of the attractive force between two
protons, and he started with the following picture.
Suppose there are two cricketers, who have a cricket
ball, and they decide to exchange the ball. One
throws the ball and the other catches it, perhaps.
Suppose they want to go on exchanging the ball,
to and fro, between them. Then the fact that they
must go on exchanging the ball means that they
must keep within a certain distance of each other.

The result is the following picture. If one proton
emits something which is captured by the second
one, and the second one emits something which is
captured by the first one, then the fact that they have
to capture, emit, re-absorb constantly means that
they will remain within a certain distance of each
other. And someone who cannot see this inter-
mediate object, this ball, the object we call the meson,
will think that these two protons have an attractive
force between them. This was Yukawa's way of
explaining the attractive force between two elemen-
tary particles.

The result of Yukawa's work was that he pre-
dicted that there do exist such particles which play
the role of intermediate objects. And he predicted
that such particles would have a mass about t:.,ee
hundred times that of electrons. Yukawa made this
prediction in 1935. In 1938 these particles were
discovered, and we now firmly believe that the forces
of nature, all forces of nature, are transmitted by
this type of exchange of intermediary particles.

Now so far I have been talking about our
methods, but what is really important are our aims.
Our aim in all this is to reduce the complexity of the
thirty elementary particles and the four fundamental
forces into something which is simple and beautiful.
And to do this what we shall most certainly need is a
break from the type of ideas which I have expressed
a complete break from the past, and a new ant
audacious idea of the type which Einstein had at the
beginning of this century. An idea of this type comes
perhaps once in a century, but that is the sort of
thing which will be needed before this complexity is
reduced to something simple.'

The ideas put forward by Salam are vivid. But
more than the specific ideas, we are interested here in
his description of science itself. For him, science is
the attempt to find in the complexity of nature some-
thing which is simple and beautiful. This is quite
different from the usual view that science collects
facts and uses them to make machines and gadgets.
Salam sees science as a truly imaginative activity,
with a poetic language of its own. This is an arresting
point that Salam made: that the mathematics in
science is a poetic language, because it spontaneously
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throws up new images, new ideas.

Science can learn from the language of poetry, and
literature can learn from the language of science.
Here we bring in our fourth contributor. He is
Lawrence Durrell, who wrote the four famous books
which make up The Alexandria Quartet. In this four-
fold novel, space and time are treated in an unusual
way, and Durrell began by talking about this.

'I was hunting for a form which I thought might
deliver us from the serial novel, and in playing
around with the notions of relativity it seemed to me
that if Einstein were right some very curious by-
products of his idea would emerge. For example, that
truth was no longer absolute, as it was to the
Victorians, but was very provisional and very much
subject to the observer's view.

'And while I felt that many writers had been
questing around to find a new form, I think they
hadn't succeeded. I don't know of course, I've only
read deeply in French. There may well be Russian
or German novels which exprt.;s this far better than
I have.

'But they hadn't expressed what I think Einstein
would call the 'discontinuity' e.i. our existence, in the
sense that we no longer live Of his reality is right)
serially, historically, from youth to middle age, to
death; but in every second of our lives is packed, in
capsule form, a sort of summation of the whole.
That's one of the by-products of relativity that I got.

'In questing around for a means of actually pre-
senting this in such an unfamiliar form as a novel,
I borrowed a sort of analogy, perhaps falsely, from
the movie camera. I'd been working with one, and
it seemed to me that when the camera traverses
across a field and does a pan shot, its a historic shot
in the sense that it goes from A to B to C to D. And
if it starts with a fingernail and backtracks until you
get a whole battlefield, that seemed to me a spa-
tialisation. It was rooted in the time sequence that
it was spatialising; it was still enlarging spatially.
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'I tried to mix these two elements together, and
see what would happen to ordinary human charac-
ters in what is after all a perfectly old-fashioned type
of novelan ordinary novel, only not serial. I found,
somewhat to my own surprise, that I was getting a
kind of stereoscopic narrative, and getting a kind of
stereophonic notion of character. This excited me so
much that I finished it and tried to add the dimension
of time by moving the whole thing forwardyou
know, "read our next issue"five years later. And
there it is, ready for the critics to play with.'

Here are Lawrence Durrell's answers to some
questions about his work:
Q. You said that you got from relativity the feeling

that truth was provisional, or at least depended
very much on the observer.

A. Well, the analogy again is the observer's position
in time and space. It's so to speak the fulcrum
out of which his observation grows, and in that
sense it is not an absolute view, it's provisional.
The subject matter is conditioned by the ob-
server's point of view.
You're really making the point that the most
important thing that relativity says is that there
are no absolutes?

A. I was saying, most important for me. I think that
any average person who's not a mathematician
would assume that that was probably the most
important part of it.
I want to recall another phrase that you've just
used. You said of your novel that 'after all
it's a perfectly old-fashioned novel'. Now I don't
feel that. I feel that your novel cmuld have been
written at no time but in the twentieth century.

A. Yes, in that sense certainly. But I was trying to
distinguish between the form which, I believe, if
it has come off at all, is original, and the content.
When I was building the form I did something
new. I said to myself, this is the shape: there are
three sides of space, one of time. How do I shift
this notion into such an unusual domain as the
novel? And at the back of my mind I wondered
whether we in the novel couldn't escape our
obsession with time only.
Your dimensions, as it were, deepen out each
character as a recession in space. You show how
different he becomes when he is seen by someone
else from another point.
Stereoscopically, you see.
I want to ask you a crucial question. Do you feel
that the kind of inspiration that you've drawn
from the scientific idea of relativity here is valid
for everyone? That we can all in some way make
a culture which combines science and the arts?

A. surely a balanced culture must do that. And I
think all the big cultures of the past have never
made very rigid distinctions. Also I think that

Q.

Q.

Q.

A.
Q.



the very great artists, the sort of universal men,
Goethe for example, are as much scientists as
artists. When Goethe wasn't writing poetry he
was nourishing himself on science.

Q. We can't expect everybody to be a Goethe, so
how are we going to unify what is obviously
differentthe sense of what the artist is doing
and the sense of what the scientist is doing?

A. I think by understanding that in every generation
the creative part of the population feels called
upon to try and attack this mysterious riddle of
what we're doing, and to give some account of
themselves. We're up against a dualism, because
some people have more intelligence and less
emotion, and vice versa. So the sort of account
they give may suddenly come out in a big poem
like Dante's, or it may come out in a Newtonian
concept. In other words, the palm isn't equally
given in each generation. But I feel that they're
linked hand in hand in this attack on what the
meaning of it all is.

The meaning of it all: the meaning of the pattern
of nature, and of man's place in nature. Durrell's
quest is also Salam's quest, and Saarinen's, and
Paolozzi's. It is the quest of every man, whether
scientist or artist or man in the street.

The driving force in man is the search for freedom
from the limitations which nature has imposed. Man,
unlike the animals, is able to free himself. The first
crude attempts were already made by Stone Age
man with his tools and paintings. Now, twenty
thousand years later, we are still struggling for free-
dom. We try to reach it by understanding the mean-
ing of things. Our age tries to see things from the
inside, and to find the structure, the architecture

The Vision of Our Age

which underlies the surface appearance of things.
We command nature by understanding her logic.

Our age has found some unexpected turns in the
logic of nature. How atoms evolve, much like living
species. How living things code and pass on their
pattern of life, much like a machine. How the
rigorous laws of nature are averaged from the million
uncertainties of atoms and individuals. How time
itself is an averaging and a d;sordering, a steady loss
of the exceptional.

How life opposes time by constantly re-creating
the exceptional. And how profoundly our ideas of
so safe and absolute a concept as time once seemed
to be can be changed by the vision of one man, who
saw and proved that time is relative.

Above all, our age has shown how these ideas, and
all human ideas, are created by one human gift:
imagination. We leave the animals behind because
they have no language of images. Imagination is the
gift by which man creates a vision of the world.

We in the twentieth century have a vision which
unifies not only the physical world but the world of
living things and the world of the mind. We have a
much greater sense of person than any other age.
We are more free than our ancestors from the
limitations both of our physical and of our psycho-
logical environments.

We are persons in our own right as no-one was
before us. It is not only that we can travel into space
and under the oceans. Nor is it only that psychology
has made us more at home with ourselves. It is a
real sense of unity with nature. We see nature not
as a thing but as a process, profound and beautiful;
and wz see it from the inside. We belong to it. This
above all is what science has given us: the vision of
our age.
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Chart of the Future

Arthur C. Clarke

1962

THE PAST

DATE TRANSPORTATION
COMMUNICATION

INFORMATION
MATERIALS

MANUFACTURING
BIOLOGY

CHEMISTRY Pinrsics
1800 Steam engines Inorganic chem.

istry
Atomic theory

Locomotive
Camera
Babbage ealcu

lator
Urea synthesized

Steamship Telegraph Machine tools Spectroscope
1850

Electricity Organic chem-
istry

Conservation of
energy

Telephone
Phonograph Electromagnetism
Office machines Evolution

Automobile Diesel engine
1900 Gasoline engino Dyes X-rays

Airplane Electron
Vacuum tube Mass production Genetics Radioactivity

Vitamins
Nitrogen &a- Plastics

1910 tion

Isotopes
Radio

Quantum theory
Chromosomes

1920 Genes
Relativity
Atomic structure

1930 Language of bees
Hormones Indeterminacy

TV Wave mechanics
Neutron

1940 Jet Radar
Rocket
Helicopter

Tape recorders
Electronic corn- Magnesium Synthetics Uranium fission

puters from sea Antibiotics Accelerators
Cybernetics Atomic energy Silicones Radio astronomy

1950 Transistor Automation
Satelhte Maser Fusion bomb Tranquilizers I C.Y.
GEM La:er Parity overthrown
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Chart of the Future

DATE TRANSPORTATION
COMMUNICATION

INFORMATION
MATERIALS

MANUFACTURUIC
BIOLOGY

CHEMISTRY Puvsics

1960 Spaceship Communication
satellite

Protein struc-
ture

I Nucleon strue-
ture

THE FUTURE

Space lab
1970 Lunar landing Translating

Nuclear rocket machines Efficient electric
storage

Cetacean Ian-
guages

1980 Planetary land-
mgs

Personal radio Exobiology
Gravity

waves
1990 Fusion power Cyborgs

Artificial Intel-
2000 Colonizing ligence "Wireless" en-

planets ergy Time, perception Subnuclear
Global library Sea mining enhancement structure

2010
Earth probes Tcicsensory de-

vices Weather control
2020 Logical Ian- Nuclear cata-

Interstellar
probes

guages
Robots

Control of
heredity

lysts

2030 Space mining
Contact with Bioengineering

extraterrestri-
als

2090 Intelligent animals
Transmutation

2050 Gravity control
Mcmory playback

Suspended
animation

"Space drive" Planetary
2060 Mechanical eau-

cator
engineering

Space, time
distortion

Coding of artifacts Artificial life
2070

Near-light speeds
Climate

control
2080

Interstellar flight

Machine intelli-
gence exceeds
man's

2090 Matter transmitter Replicator
Meetiog with World brain Immortality

2100 extraterres-
trials

Astronomical
engineering
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PERCY WILLIAMS BRIDGMAN

P. W. Bridgman was born in Cambridge, Massachusetts
in 1882, entered Harvard in 1900, received his Ph.D.
in physics there in 1908, and in 1913 became Professor.
He retired in 1954, ond died in 1961. Bridgmon's ex-
perimental work was in high-pressure physics, for which
he received the Nobel Prize in 1946 He has made
important contributions to philosophy of science; for
example, we owe him first detailed articulation of the
concept of operational definition.

JACOB BRONOWSKI

Jacob Bronowski, who received his Ph.D. from Cam-
bridge University in 1933, is now o Fellow of the So lk
Institute of Biologicol Studies in Colifornio. He has
served os Director of Generol Process De' .opment for
the National Cod Boord of Eng lond, as the Science
Deputy to the British Chiefs of Staff, ond os head of
the Protects Division of UNESCO. In 1 953 he was
Carnegie Visiting Professor ot the Massochusetts Insti-
tute of Technology.

HERBERT BUTTERFIELD

Herbert Butterfield is Professor of Modern History at the
University of Cambridge. He groduoted from Combridge
ond was elected o Fellow of Peterhouse ot the some in-
stitution in 1923. He became Master of Peterhouse in
1955 ond vice choncellor of the University in 1959.
His writings include books on the history of religion,
international affoirs, and the history of science.

ALEXANDER CALDER

Alexonder Colder, famous Americon sculptor and in-
ventor of the mobile, wos born in Pennsylvonio in 1898.
Intending to become an engineer, Colder entered the
Stevens Institute of Technology, groduating in 1919.
But by 1926 he had already published his first book
(Animal Sketches) ond presented his first exhibition of
paintings. A visit with the Dutch ortist Piet Mondrion
in 1930 oriented him toward abstraction, ond the next
year he produced the first "stobiles," and in 1932, the
first "mobiles." In these mobiles, Colder was oble to
incorporate motion into sculpture.

ARTISTS AND WRITERS

ARTHUR C. CLARKE

Arthur C. Clarke, British scientist and writer, is o
Fellow of the Royal Astronomical Society. During
World War II he served os technicol officer in charge
of the first oircroft ground-controlled approach project.
He has won the Kolinga Prize, given by UNESCO for
the populorization of science. The feasibility of many
of the current space developments was perceived ond
outlined by Clarke in the 1930's. His science fiction
novels include Childhoods End and The City ond the
Stars.

WILLIAM KINGDON CLIFFORD

W. K. Clifford was born in Exeter, England in 1845.
He entered Trinity College, Cambridge in 1863, and
graduated second in his class in mothemotics. M 1871
he wos appointed Professor of Applied Mathematics ot
University College, London, ond three years later wos
named a Fellow of the Royal Society. He died in 1897.
His mathematical ideos were often very for ahead of the
times.
Clifford wos an accomplished speaker, ond wos particu-
larly odept ot the popular exposition of obstruse doc-
trines. He was influenced by the writings of Charles
Darwin and Herbert Spencer, ond wos concerned with
the implications of science for ethics.

RICHARD PHILLIPS FEYNMAN

Richord Feynman was born in New York in 1918, and
graduated from the Massachusetts Institute of Technology
in 1939. He received his doctorote in theoretical phys-
ics from Princeton in 1942, ond worked ot los Alamos
during the Second World Wor. From 1945 to 1 951 he
taught ot Cornell, and since 1951 has been Tolman
Professor of Physics at the Colifornio Institute of Tech-
nology. Professor Feynman received the Albert Einstein
Aword in 1954, ond in 1965 was nomed o Foreign Mem-
ber of the Royal Society. In 1966 he wos aworded the
Nobel Prize in Physics, which he shored with Shinichero
Tomonaga ond Julian Schwinger, for work in quantum
field theory.

JAMES BASIL GERHART

James Gerhart is Professor of Physics at the University
of Washington M Seattle. Before coming to Washington,
he taught ot Princeton, where he received his Ph.D. in
1954. Professor Gerhart's specialty is nuclear physics.
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J. B. S. HALDANE

J. B. S. Haldane is a British geneticist who serves as
Professor of Biometry at University College, London.
He pioneered in the application of mathematics to the
study of natural selection and to other aspects of evol-
utionary theory. His broad grounding in mathematics,
physics, and biology has enabled him to make uniquely
insightful contributions in many different areas.

GERALD HOLTON

Gerald Holton received his early ducation in Vienno,
at Oxford,, and at Wesleyan University, Connecticut.
He has been at Harvard University since receiving his
Ph.D. degree in physics there in 1948; he is Professor
of Physics, teaching courses in physics as well as in the
history of science. He was the founding editor of the
quarterly Daedalus. Professor Holton's experimental
research is on the properties of matter under high pres-
sure. He is a co-director of Harvard Project Physics.

FRED HOYLE

Fred Hoyle is an English theoretical astronomer, born in
Yorkshire in 1915. Now Professor of Astronomy at Cam-
bridge University, he is perhaps best known for one of
the major theories on the structure of the universe, the
steady state theory. Hoyle is well known for his scien-
tific writing, and his success in elucidating recondite
matters for the layman.

GYORGY KEPES

Gyorgy Kepes was born in 1906 in Selyp, Hungary.
From 1930 to 1936 he worked in Berlin and Landon on
film, stage, and exhibition design. In 1937 he came
to the United States to head the Light and Color De-
partment at the Institute of Design in Chicago. Since
1946 he has been Professor of Visual Design at the
Massachusetts Institute of Technology. He has written
The New Londscape in Art and Science, Language of
Vision, and edited several books, including those in
the Vision + Value series. Professor Kepes is one of
the major painters; his work is included in the perma-
nent collections of many museums.
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PAUL KIRKPATRICK

Born in South Dakota, Paul Kirkpatrick received his
doctorate in physics in 1923. Before reaching Stanford
in 1931, he taught in China and Hawaii. At Stanford,
he was named Professor of Physics in 1937, and became
Professor Emeritus in 1959. Professor Kirkpatrick has
served as education advisor with the U.S. Overseas
Mission to the Philippines, and with the UNESCO mis-
sion to India

JAMES CLERK MAXWELL

Jomes Clerk Maxwell was born in Edinburgh, of a prom-
inent Scottish family, in 1831. He graduated second in
his class in mathematics at Cambridge, and was appointed
to a professorship at Aberdeen in 1856. Shortly there-
after he demonstrated that Saturn's rings were composed
of small particles . Next, Maxwell considered the me-
chanics of gases, and helped develop the kinetic theory.
Maxwell's crowning ochievement was his mathematical
formulation of the laws of electricity and magnetism.
He showed that electricity and magnetism were related,
and proposed that light was one form of electromagnetic
radiation. In 1871, Maxwell was appointed first
Professor of Experimental Physics at Cambridge. He
died eight years later, his life cut short by cancer.

HERBERT MATTER

Herbert Matter was born in Engelberg, Switzerland, on
April 25, 1907 After graduating from college, he
studied pointing at L'Ecale des Beaux Arts in Geneva,
and under Fernand Leger in Paris. In 1936 he came to
the United States to work as a free-lance photographer
for Harper's Bazaar, Vogue, and others. Since then he
has won First Prize in the Polio Poster Design Competi-
tion, and worked on the design program for the New
Haven Railroad and for the Boston and Main Railroad,
among many other projects. Presently he is the Design
and AJvertising Consultant for Knoll Association, Inc.,
New York, graphic consultant to the Solomon R. Gug-
genheim Museum, New York, and Professor of Photog-
raphy and Graphic Design at Yale University.



RUDI HANS NUSSBAUM

Rudi Nusssaum was born in Germany in 1922, he re-
ceived his Ph.D. from the University of Amsterdam in
experimental physics in 1954. Since then he has served
as UNESCO research fellow at the Nuclear Physics
Laboratory in Liverpool, os o senior fellow at CERN in
Geneva, and is now Professor of Physics ct Portland
State College.

GEORGE POLYA

George Polya was born in Budapest in 1887. He studied
in Vienna, Giittingen, and Budapest, where he received
his doctorate in mathematics in 1912. He has taugot in
Zurich, and in this country at Brown University, Smith
College, and Stanford University, where he served as
Professor of Mathematics from 1946 to 1953. He is now
Professor Emeritus.

JACOPO DA PONTORMO, (JACOPO CARRUCCI)

Born at Pontormo, Italy, May 24,1494, Jacopo Carrucci,,
later to be known as Jacopo da Pontormo, wos one of the
first of the Florentine Mannerists. Apprenticed to
Leonardo da Vinci and later to Albertinelli and Piero
di Cosimo, Pontormo broke away from the classical
High Renaissance style. His altarpiece (still in the
church of S. Michele Visdomini, Florence) exemplifies
his intense!, emotional style, in contrast to the tradi-
tional harmonically balanced style. Pontormo was
buried in Florence on January 2, 1557.

DUANE H. D. ROLLER

Duane H. D. Roller is a graduate of Columbia Univer-
sity, where he received the A.B. in History of Science
in 1941, of Purdue University (M.S. in Experimental
Physics in 1949), and of Harvard University,, where he
was awarded the Ph.D. in History of Science and
Learning in 1954. Since 1954 Dr. Roller has been at
the University of Oklahoma, where he is McCaslond
Professor of the History of Science.

W. W. SAWYER

W. W. Sawyer was born in England in 1911. He at-
tended Highgate School and St. John's College, Cam-
bridge, where he specialized in the mathematics in
England, New Zealand, and in the United States at
the University of Illinois. At present he is Professor
of Mathematics at Wesleyan University, where he edits
the Mathematics Student Journal.

C. L. STUNG

C. L. Stong was barn in 1902 in Douds, Iowa. He at-
tended the University of Minnesota, the Armour Institute
in Chicago, and the University of Michigan (Detroit).
For thirty years he was an engineer with Nestern Elec-
tric. Mr. Stong has also been involved in movie pro-
duction, and in the early 1920's he was a stunt flier.
Since 1948 he has been a contributor to Scientific
American; his column, the Ampteur Scientist, appears
month y

WARREN WEAVER

Warren Weaver received his PH.D. in mathematics and
physics from the University of Wisconsin in 1921, and
remained at his alma mater, becoming Professor of
Mathematics and Chairman of the Department in 1928.
In 1932 he was appointed Director of Natural Sciences
ct the Rockefeller Foundation, and in 1955 was named
Vice-president. He later was associated with the
Sloan-Kettering Institute, and since 1959 has been
with the Alfred P. Sloan Foundation. He is the recip-
ient of the Arches of Science Award given by the Pacif-
ic Science Center of Seattle for outstanding contribu-
tions to the improved public understanding of science."

BASIL WILLEY

Basil Willey was born in 1897 and later attended Peter-
house College, Cambridge, where he read history and
English. From 1946 to 1964 he served os King Edward
VII Professor of English Literature at Cambridge. In
1958 he was selected as President of Pembroke College,
Cambridge, and is now an Honorary Fellow. His pub-
lished works include many studies in English and the
history of ideas.
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